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A general class of explicit and implicit dynamic finite difference schemes for large-eddy
simulation is constructed, by combining Taylor series expansions on two different grid res-
olutions. After calibration for Re!1, the dynamic finite difference schemes allow to min-
imize the dispersion errors during the calculation through the real-time adaption of a
dynamic coefficient. In case of DNS resolution, these dynamic schemes reduce to Taylor-
based finite difference schemes with formal asymptotic order of accuracy, whereas for
LES resolution, the schemes adapt to Dispersion-Relation Preserving schemes. Both the
explicit and implicit dynamic finite difference schemes are tested for the large-eddy sim-
ulation of the Taylor–Green vortex flow and numerical errors are investigated as well as
their interaction with the dynamic Smagorinsky model and the multiscale Smagorinsky
model. Very good results are obtained.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
Direct numerical simulation of turbulent flows implies that all scales of motion must be resolved accurately in order to
predict well the evolution of the flow. This approach, however, is known to be prohibitively expensive in case of high-Rey-
nolds numbers, due to excessive grid requirements to resolve the finest vortex structures in the turbulent flow. Almost since
the early days of Computational Fluid Dynamics, various approaches and strategies have therefore been developed to over-
come these excessive grid requirements. In particular, large-eddy simulation (LES) is evolving in recent years into a mature
simulation technique for turbulent flows, with the potential to combine cost effectiveness with accuracy [1]. The classic phi-
losophy behind large-eddy simulation is to resolve only the largest, unsteady and flow specific, turbulent motions, which are
part of the energy containing range or the inertial subrange. Since the important main features of the flow are resolved, the
LES solution is believed to provide a statistically accurate prediction of the mean flow.

In recent years, the necessity for numerical quality in DNS and especially LES of turbulent flows, has been investigated by
several researchers [2–5]. Aside from aliasing errors, which should be prevented by filtering out all scales of motion beyond
the filter cutoff wavenumber jc ¼ 2

3 jmax [6], discretization errors are mainly responsible for the loss of numerical accuracy in
large-eddy simulations. Indeed, although standard finite difference methods or finite volume methods accurately resolve the
largest scales of motion on the computational grid ðj� jmaxÞ, the numerical accuracy with which the smallest scales of mo-
tion on the computational grid ðj � jmaxÞ are resolved is often insufficient. Since these smallest resolved scales typically con-
tain a significant amount of energy in large-eddy simulations, their influence on the evolution of the largest resolved scales
and on the mean flow statistics is expected to be significant. Ghosal [2] and Chow and Moin [4] demonstrated that the
. All rights reserved.
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standard 2nd-order central finite difference method can lead to large numerical errors which dominate the accuracy of the
large-eddy simulation. Therefore, these authors recommend a filter-to-grid cutoff-ratio jc

jmax
6

1
4 when using a 2nd-order cen-

tral scheme, to ensure that the magnitudes of the discretization errors remain smaller than the magnitude of the modeled
force of the subgrid scales. Although Park and Mahesh [7] found, in an Eddy-Damped Quasi-Normal Markovian (EDQNM) LES
of isotropic turbulence, that in case of the 2nd-order scheme, the subgrid force remains dominant at low Reynolds numbers,
the recommendations of Ghosal [2] and Chow and Moin [4] were confirmed by Berland et al. [5], using EDQNM theory for LES
at high Reynolds numbers. However, in order to reduce computational costs, it is highly desirable in large-eddy simulation to
resolve as much scales of motion as possible on the computational grid. Therefore, the accuracy of the discretization schemes
should ideally be guaranteed for all scales up to the dealiasing limit jc ¼ 2

3 jmax. Moreover, since accurate resolution of the

smallest scales (characterized by jc) increases the required number of nodes with a factor 2jmax
3jc

� �3
over those theoretically

necessary, small values of jc
jmax

are prohibitively expensive for most 3D LES computations.
Although it is common practice in Computational Fluid Dynamics to use (high-order) central schemes based on a truncated

Taylor series, leading to a certain formal asymptotic order of accuracy for the largest scales, this is not necessarily the optimal
strategy for large-eddy simulation. Indeed, higher-order discretizations are often applied to allow for larger filter-to-grid cut-
off-ratios. However in order to obtain acceptable dispersion errors up to jc ¼ 2

3 jmax, which is the maximum resolution on the
computational grid, at least the standard 10th-order central scheme or the 6th-order compact Padé scheme are required,
which again inevitably leads to increased complexity and/or computational costs. Preserving the global dispersion relation
for the full range of scales up to jc ¼ 2

3 jmax instead of focusing on asymptotic order of convergence, is therefore much more
advantageous for large-eddy simulation of turbulent flows. Indeed, it is desirable for LES to have optimized finite difference
approximations of the derivatives with similar Fourier characteristics as the analytical derivatives. Although such Dispersion-
Relation Preserving (DRP) numerical methods are common in the field of computational aero-acoustics [8–12], where accu-
rate simulation of propagating waves requires highly non-dispersive and non-dissipative finite difference schemes, these
techniques are not very common yet in the field of LES and only few authors have applied such methods [12,5].

Recently, Fauconnier et al. [13] successfully developed a new family of dynamic finite difference schemes for large-eddy
simulation. This class of explicit schemes was constructed by combining Taylor series expansions on two different grid res-
olutions, which is reminiscent to Richardson Extrapolation. In contrast to Richardson Extrapolation, however, the resulting
schemes are not characterized by higher order asymptotic convergence, but rather tend to preserve the global dispersion
relation for the full range of scales up to jc ¼ 2

3 jmax. Moreover, in addition to the Dispersion-Relation Preserving schemes
of, e.g. [8], these dynamic schemes are optimized dynamically during the simulation according to the instantaneous prop-
erties of the flow and dispersion errors are minimized through the real-time adaption of certain coefficients. In case of
DNS resolution, i.e. for sufficiently smooth and regular physics on the grid, the dynamic schemes reduce to the standard Tay-
lor-based finite difference schemes with formal asymptotic order of accuracy. However, when going to LES resolution, the
schemes adapt in real time to preserve the global dispersion relation. Good properties were shown for the large-eddy sim-
ulation of Burgers’ equation.

In the present work, a general class of implicit dynamic finite difference schemes for large-eddy simulation is constructed,
for which the explicit schemes in [13] form a subclass. After introducing the necessary mathematical discretization formal-
isms, the general class of implicit dynamic finite difference approximations is derived. These schemes are analyzed in Fourier
space and the remaining blending factor f in the dynamic schemes is then calibrated to obtain optimal accuracy for Re!1,
using a simplified model for the turbulent energy spectrum. Further, the performance of a 2nd- and 4th-order explicit dy-
namic scheme and a 4th-order implicit dynamic scheme are evaluated for the large-eddy simulation of the three-dimen-
sional Taylor–Green vortex flow, which may be considered as a prototype system for transition into turbulence [14,6].
Two different subgrid models are applied for the LES, i.e. the dynamic Smagorinsky model and the small–small multiscale
Smagorinsky model. The total simulation error is then decomposed in order to separate the pure finite difference errors from
the modeling errors [15,16]. The numerical accuracy of the developed explicit and implicit dynamic schemes is discussed as
well as the sensitivity to the predefined blending factor f and their ability to adjust for anisotropy. Finally, the numerical er-
rors and the modeling errors are compared and their interactions are investigated.

2. Mathematical formalism
Assume a vector field uðx; tÞ defined in continuum space Rq, q 2 f1;2;3g. To avoid an overload in notation, we restrict the
formulas to one spatial dimension q ¼ 1, without loss of generality and we do not write explicitly the dimension in time,
such that uðx; tÞ ¼ uðxÞ, x 2 R. Consider further a one-dimensional uniform node distribution with equispaced Cartesian coor-
dinates xi 2 R, i 2 N and spacing D ¼ xiþ1 � xi ¼ xi � xi�1. The explicit definition of the analytical nth partial derivative of the
continuous field uðxÞ, x 2 R, evaluated in a node xi, can be written as
@nu
@xn
ðxiÞ ¼ lim

D!�

1
Dn

Xr

j¼�r

bjuðxiþjÞ
" #

; � ¼ 0; ð1Þ
where bj denotes a set of weighting coefficients and 2r is the number of neighbouring nodes involved in the specific
definition. The stencil width of the scheme’s definition is thus 2r þ 1. Since (1) cannot be satisfied in discrete space, where
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inevitably � > 0, the derivative can only have a discrete approximation constructed from a Taylor series expansion. Assuming
uðxÞ an infinitely differentiable function, and using the notation �u for the discrete field and d for the discrete difference oper-
ator, Taylor series expansion for the nth derivative in a node x ¼ xi can be written as1
1 The

2 The
@nu
@xn
ðxiÞ ¼

dnu
dxn
ðxiÞ þ

X1
k0¼k

c�k0 ;nD
k0@

k0þnu
@xk0þn

ðxiÞ; ð3Þ
where the finite difference approximation of the partial derivative is defined as
dn�u
dxn
ðxiÞ ¼

1
Dn

Xr

j¼�r

bj�uðxiþjÞ; ð4Þ
and the series’ initial index is determined by
k ¼
2r þ 1� n 8n 2 2Nþ 1;
2r þ 2� n 8n 2 2N:

�
ð5Þ
The remaining series expansion in (3), called the truncation error, is convergent and vanishes when D! 0, whereas the first
term of the truncation error is the leading order truncation term. The finite difference approximation (4) is said to have a for-
mal order of accuracy k, denoted as OðDkÞ. In 1991, Lele [17] introduced the implicit or Padé finite difference approximations
with compact stencil support by combining expression (3) in node x ¼ xi with the corresponding expressions in the neigh-
bouring nodes x ¼ xiþl, l 2 N. The Taylor series expansion for the implicit finite difference approximation for the nth deriva-
tive is then given by2
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ
X1
k0¼k

c�k0 ;nD
k0@

k0þnu
@xk0þn

ðxiÞ; ð7Þ
where the order of accuracy k is given by
k ¼
2r þ 2qþ 1� n 8n 2 2Nþ 1;
2r þ 2qþ 2� n 8n 2 2N:

�
ð8Þ
It is obvious that the explicit finite difference approximations (3) can be seen as a subclass of the implicit finite difference
approximations (7). Hence, in this work, expression (7) will be used to derive the dynamic finite difference schemes in anal-
ogy with [13]. Since DNS and LES are sensitive to numerical dissipation, which can excessively damp small scales, only cen-
tral schemes will be considered, having a (anti)symmetric set of coefficients bj and al. Although these central schemes are
non-dissipative, they can induce dispersion errors, affecting the phase speed of the separate wave components and redistrib-
uting energy. For regular fields, which are sufficiently smooth on the computational grid, the Taylor series converges rapidly
due to small contributions of the higher derivatives. Hence, the dispersion errors remain low. However, in case of highly fluc-
tuating fields with marginal resolution on the grid, the contributions of the higher derivatives in the truncation terms of the
Taylor series become much more important, slowing down the convergence of the Taylor series and thus leading to signif-
icant dispersion errors. Standard Taylor-based asymptotic finite difference approximations assume smooth fields and fast
convergence of the Taylor series. However, in case of irregular LES-fields, where the Taylor series converges more slowly,
it would be much more advantageous to minimize contributions of all terms in the Taylor series to obtain good overall per-
formance. In other words, the best strategy for approximating the derivatives with finite difference techniques depends on
the resolution efficiency of the computational grid.

In Fauconnier et al. [13], we developed a class of highly accurate explicit dynamic finite difference schemes which have
the ability to adapt to the instantaneous resolution efficiency on the computational grid. It was shown both analytically and
numerically that these dynamic finite difference schemes, which were constructed by comparing Taylor series on two dif-
ferent grid resolutions, succeeded in minimizing the dispersion errors during the calculation by minimizing the magnitude
of all contributions in the truncation term. In the following, we expand the technique to a general class of implicit finite dif-
ference approximations, of which the explicit schemes are a subclass.
truncation series coefficients c�
k0 ;n

are determined as

c�k0 ;n ¼ �
Xr

j¼�r

bj j
k0þn

ðk0 þ nÞ!
: ð2Þ

truncation series coefficients c�
k0 ;n

are determined as

c�k0 ;n ¼
Xq

l¼�q

al l
k0

ðk0Þ!
�
Xr

j¼�r

bj j
k0þn

ðk0 þ nÞ!
: ð6Þ
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3. A general class of implicit dynamic finite difference approximations

3.1. Introduction

For the construction of the implicit finite difference approximations, the same methodology is adopted as for the con-
struction of the explicit dynamic finite difference approximations in [13]. Consider the Taylor series (7) of the kth-order im-
plicit central finite difference approximation for the nth derivative of the continuous and infinitely differentiable field uðxÞ,
x 2 R, in a node x ¼ xi. Consider further a similar kth-order implicit finite difference approximation for the nth partial deriv-
ative on the same computational grid with grid spacing D, but expressed as if the grid resolution were aD, a 2 N such that the
stencil width for the explicit part is 2ar þ 1 whereas that for the implicit part is 2aqþ 1. The Taylor series expansion then
reads
3 Alth
entirely
this wo
Xq

l¼�q

al
@nu
@xn
ðxiþalÞ ¼

Xr

j¼�r

bj

ðaDÞn
�uðxiþajÞ þ

X1
k0¼k

c�k0 ;nðaDÞk
0@k0þnu
@xk0þn

ðxiÞ: ð9Þ
Instead of constructing immediately higher-order approximations, two alternative approaches can be used for achieving
higher-order approximations from these series. One can either find a finite difference approximation for the leading order
truncation term, or one can eliminate the coefficient of the leading order truncation term by combining the OðDkþ2Þ-trun-
cated Taylor series in expressions (7) and (9). The latter technique, known as Richardson Extrapolation, has no direct advan-
tage over the first one, since both lead to a finite difference approximation of formal order of accuracy kþ 2. However, the
combination of both techniques can lead to a non-trivial self-adaptive dynamic scheme with basic order of accuracy k, but
with better spectral characteristics.

Discretization of the leading order truncation term in both Taylor expansions (7) and (9) with a 2nd-order accurate finite
difference approximation3 results into the Taylor series expansions
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ c�k;nD
kd

kþn�u
dxkþn

�����
D

þOðDkþ2Þ; ð10Þ

Xq

l¼�q

al
@nu
@xn
ðxiþalÞ ¼

Xr

j¼�r

bj

ðaDÞn
�uðxiþajÞ þ c�k;nðaDÞkd

kþn�u
dxkþn

�����
aD

þOððaDÞkþ2Þ: ð11Þ
Although the theoretical value of the coefficient of the leading order truncation term c�k;n is known a priori from the Taylor
series, it is also possible to determine its value by combining the truncated expressions (10) and (11). The coefficient, ob-
tained in that way, will not necessarily have the same value as the one obtained from the Taylor series, i.e. c�k;n, as it will
be a function of �uðxÞ and its derivatives. Moreover, it will be shown that the obtained value of the coefficient can be optimal
with respect to �uðxÞ, such that deficiencies of the resulting finite difference approximation, e.g. dispersion errors are
minimized.

3.2. Multi-resolution premiss

Fig. 1(left) gives an illustration of the normalized truncation errors OðDkþ2Þ and OððaDÞkþ2Þ of the finite difference approx-
imations (10) and (11) as function of the relative wavenumber j=jmax. Assume that the discrete field �uðxÞ is characterized by
a cutoff wavenumber jc , such that the spectral content relative to the computational grid is limited to the range ½0;jc=jmax�.
The global magnitudes of the truncation errors in Eqs. (10) and (11) are then represented by the area under the curves
OðDkþ2Þ and OððaDÞkþ2Þ. The global difference between the truncation errors in (10) and (11) is indicated by the light-grey
area between the curves. Fig. 1 (right) shows the normalized truncation errors OðDkÞ and OððaDÞkÞ of the finite difference
approximations (10) and (11) where the error is minimized over the wavenumber range ½0;jc=jmax�, by replacing in each
equation c�k;n with an optimal coefficient ck;n. The order of accuracy remains OðDkÞ, unless ck;n has the exact Taylor value
c�k;n. This follows readily from the expression of the truncation series, given by
OðDkÞ ¼
X1
k0¼k

c�k0 ;nD
k0@

k0þnu
@xk0þn

� ck;nD
k @kþnu
@xkþn

�
X1
k0¼2

c�k0 ;kþnD
k0@

k0þkþnu
@xk0þkþn

( )
; ð12Þ

OððaDÞkÞ ¼
X1
k0¼k

c�k0 ;nðaDÞk
0@k0þnu
@xk0þn

� ck;nðaDÞk @kþnu
@xkþn

�
X1
k0¼2

c�k0 ;kþnðaDÞk
0@k0þkþnu
@xk0þkþn

( )
: ð13Þ
ough higher-order discretizations could be perfectly adopted, there would be no advantage in such an approach. Indeed, the higher-order accuracy is
determined by the Taylor series in expressions (7) and (9) and not by the accuracy of the discretization of the leading order truncation term. Hence, in

rk the 2nd-order approximations are preferred for the discretization of the leading order truncation terms, which is the minimal order of accuracy.
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Fig. 1. Multi-resolution premiss. Illustration of the error of a standard finite difference approximation on two different grid resolutions (left) and an
optimized finite difference approximation on two different resolutions (right). The global magnitude of the discretization error OðDkÞ is indicated in dark
grey, whereas the global difference between OðDkÞ and OððaDÞkÞ is indicated in light grey.
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Hence, the choice of an optimal ck;n allows to minimize the magnitude of the truncation errors (12) and (13) over the interval
½0;jc=jmax�, which is more advantageous than increasing the order of accuracy [8–12,5,13].

It was shown in [13] that the optimal coefficient ck;n can be determined by minimizing the difference between the trun-
cated equations (10) and (11), which is equivalent with minimizing the difference between truncation errors (12) and (13).
This strategy relies on the assumption of two specific premisses.

1. First, it is postulated that if the magnitudes of both truncation errors (12) and (13) are minimal in the wavenumber range
½0;jc=jmax�, then, their difference should also be minimal in that range. This is illustrated in Fig. 1 (right). Hence, extract-
ing an optimal value of ck;n from Eqs. (10) and (11) in such a way that the difference between the global magnitudes of the
truncation errors (12) and (13) is minimized, should be a sufficient condition for minimizing the global magnitudes of
both truncation errors.

2. A necessary condition for the first premiss to be valid is that the role of ck;n must be identical in both Eqs. (10) and (11),
which is not necessarily true. Indeed, the optimal value of ck;n depends on the spectral content of the field �uðxÞ propor-
tional to the grid resolution, i.e. jc=jmax. However, it can be understood that the optimal ck;n for which the truncation
error (12) on the fine resolution is minimal does not automatically lead to a minimal truncation error (13) on the coarse
resolution and vice versa, unless jc=jmax ¼ 0 and thus ck;n ¼ c�k;n for both resolutions. In order to remedy this inconsis-
tency, it was proposed in [13] to introduce a blending factor f in the coarse resolution equation (11).

3.3. Construction

The construction of the dynamic finite difference schemes is proceeded by replacing the theoretical Taylor coefficient c�k;n
in Eqs. (10) and (11) by the coefficient ck;n. Further, a blending factor f is introduced into the coarse resolution equation (11),
leading to a modified expression for the discretized leading order truncation term. The resulting equations then yield
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ ck;nD
kd

kþn�u
dxkþn

�����
D

þOðDkÞ; ð14Þ

Xq

l¼�q

al
@nu
@xn
ðxiþalÞ ¼

Xr

j¼�r

bj

ðaDÞn
�uðxiþajÞ þ ck;nðaDÞk f

dkþn�u
dxkþn

�����
aD

þ ð1� f Þd
kþn�u

dxkþn

�����
D

8<:
9=;þOððaDÞkÞ: ð15Þ
The precise role of f will be clarified in Section 3.6 and a proper value will be determined in Section 4.2. Unless ck;n has the
exact Taylor value c�k;n, the order of accuracy in both expressions remains OðDkÞ. This is explained by the specific formulation
of the truncation error. Subtracting (14) and (15) leads to an expression for the difference between both approximations, i.e.
E ¼ Lþ ck;nM ¼ OððaDÞkÞ �OðDkÞ ð16Þ
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in which
L ¼ �
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ � al

@nu
@xn
ðxiþalÞ

( )
þ
Xr

j¼�r

bj

Dn �uðxiþjÞ �
bj

ðaDÞn
�uðxiþajÞ

� �
; ð17Þ

M ¼ ð1� akÞDkd
kþn�u

dxkþn

�����
D

� akDkf
dkþn�u
dxkþn

�����
aD

� dkþn�u
dxkþn

�����
D

0@ 1A: ð18Þ
Following the first premiss, the magnitude of the difference (16), which is a function of the parameter ck;n, provides an indication
about the accuracy with which the finite difference scheme on the fine grid resolution approximates the analytical derivative
(Fig. 1). If the difference is small, the resolution is sufficiently fine in order to ensure an accurate finite difference approximation.
In contrast, a large difference E indicates that the resolution is not fine enough to guarantee an acceptable accuracy of the finite
difference approximation. Moreover, an optimal coefficient ck;n can be determined such that the difference E and the truncation
errors on both resolutions are minimized. Hereafter, the cases f ¼ 0 and f –0 are further investigated.

3.4. Asymptotic high-order schemes for f ¼ 0

Consider a blending factor f ¼ 0 and assume that the coefficient ck;n ¼ c�k;n. Then, Eqs. (14) and (15) reduce to expressions
(10) and (11). Subtracting both equations, as in expression (16), directly results into relation
c�k;nð1� akÞDkd
kþn�u

dxkþn

�����
D

¼
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ �

@nu
@xn
ðxiþalÞ

( )
�
Xr

j¼�r

bj

Dn �uðxiþjÞ �
1
an

�uðxiþajÞ
� �

þOðDkþ2Þ: ð19Þ
Substitution of this into (10), leads to the finite difference approximation
Xq

l¼�q

al ak@
nu
@xn
ðxiþlÞ �

@nu
@xn
ðxiþalÞ

( )
¼
Xr

j¼�r

bj

Dn ak�uðxiþjÞ �
1
an

�uðxiþajÞ
� �

þOðDkþ2Þ; ð20Þ
which is Richardson’s Extrapolation formula for Padé schemes. Expression (20) is an approximation with formal asymptotic
order of accuracy OðDkþ2Þ. Remark that for f ¼ 0, the previous procedure applied to (14) and (15) also leads to Richardson’s
Extrapolation formula (20), regardless the value of the coefficient ck;n. In other words, putting f ¼ 0 and substituting the va-
lue of ck;n, determined by relation (16), into Eq. (14) always results into an approximation with formal asymptotic order of
accuracy OðDkþ2Þ.

Approximation (20) is incompact since it involves 2aqþ 2ar þ 2 nodes, whereas in principle only 2qþ 2r þ 4 nodes are
required in order to obtain the same accuracy. Therefore, relation (19) will be enforced in this work in order to guarantee
the compactness of the finite difference stencil. Since the aim is to construct optimized finite difference schemes with good
Fourier characteristics, abandoning the concept of formal asymptotic order of accuracy, the case where f is different from
zero is further investigated.

3.5. Optimized schemes for f – 0

For the case f – 0, a more general approach is followed similarly to [13]. The coefficient ck;n is extracted from Eqs. (14) and
(15) by means of a least square optimization, in which the least square averaging domain is again an additional degree of
freedom. Since the right-hand side in expression (17) does not necessarily have a compact stencil, it is first substituted by
relation (19). Similarly, the last term in Eq. (18), which is generally incompact, can be replaced with a relation that is anal-
ogous to relation (19), namely
dkþn�u
dxkþn

�����
aD

� dkþn�u
dxkþn

�����
D

� c�2;kþnð1� a2ÞD2d
kþnþ2�u

dxkþnþ2

�����
D

; ð21Þ
in which c�2;kþn is again a constant coefficient known from Taylor series expansion. Substitution of relations (19) and (21) into
(17) and (18) yields
L ¼ c�k;nðak � 1ÞDkd
kþn�u

dxkþn

�����
D

; ð22Þ

M ¼ ð1� akÞDkd
kþn�u

dxkþn

�����
D

� akDkf c�2;kþnð1� a2ÞD2d
kþnþ2�u

dxkþnþ2

�����
D

8<:
9=;: ð23Þ
The optimized dynamic coefficient can then be extracted by least square minimization of the difference (16)
@

@ck;n
hE2i ¼ 0; ð24Þ
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where h�i denotes an averaging operator, resulting finally in the dynamic coefficient
cdyn
k;n ¼ �

hLMi
hMMi : ð25Þ
In the current work, only global averaging operations for the finite difference schemes are considered such that the dynamic
coefficient is calculated as
cdyn
k;n ¼ c�k;n

dkþn �u
dxkþn

���D2

� akð1�a2Þ
1�ak fc�2;kþnD

2dkþnþ2 �u
dxkþnþ2

���Ddkþn �u
dxkþn

���D� �
dkþn �u
dxkþn

���D � akð1�a2Þ
1�ak fc�2;kþnD

2dkþnþ2 �u
dxkþnþ2

���D	 
2
* + : ð26Þ
Once cdyn
k;n is calculated, its value can be used in the optimized implicit finite difference approximation
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ cdyn
k;n Dkd

kþn�u
dxkþn

�����
D

þOðDkÞ: ð27Þ
Eq. (27) is useful in case of explicit dynamic finite difference schemes (q ¼ 0 and a0 ¼ 1). Formulation (27), however,
undermines the advantageous philosophy of compact Padé schemes. Indeed, using an explicit finite difference approxima-
tion for the ðkþ nÞth derivative results into an implicit scheme with a larger explicit stencil width than strictly required for
this order of accuracy. This can be remedied by substituting the explicit ðkþ nÞth derivative by an implicit formulation,
which is equivalent of writing (27) immediately in its most compact formulation. Obviously, the latter approach is less com-
plicated than the elaborate construction of an implicit formulation of the ðkþ nÞth derivative. Hence, consider respectively
the incompact and compact ðkþ 2Þnd-order implicit finite difference approximations
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ c�k;nD
kd

kþn�u
dxkþn

�����
D

þOðDkþ2Þ; ð28Þ

Xq

l¼�q

a0l
@nu
@xn
ðxiþlÞ ¼

Xrþ1

j¼�r�1

b0j
Dn �uðxiþjÞ þOðDkþ2Þ: ð29Þ
Subtracting both expressions (28) and (29) and multiplying the resulting relation by the factor cdyn
k;n =c�k;n gives
cdyn
k;n Dkd

kþn�u
dxkþn

�����
D

¼
cdyn

k;n

c�k;n

Xq

l¼�q

ðal � a0lÞ
@nu
@xn
ðxiþlÞ

" #
þ

cdyn
k;n

c�k;n

Xrþ1

j¼�r�1

b0j
Dn �uðxiþjÞ �

Xr

j¼�r

bj

Dn �uðxiþjÞ
" #

þOðDkþ2Þ; ð30Þ
substitution of which in Eq. (27) yields,
Xq

l¼�q

al �
cdyn

k;n

c�k;n
ðal � a0lÞ

" #
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn 1�
cdyn

k;n

c�k;n

" #
�uðxiþjÞ þ

cdyn
k;n

c�k;n

Xrþ1

j¼�r�1

b0j
Dn �uðxiþjÞ þOðDkÞ: ð31Þ
Although for the higher derivatives in (26) again compact Padé schemes may be used, in this work they are obtained using
explicit approximations for reasons of simplicity. The resulting dynamic scheme (31) has a formal order of accuracy k unless
cdyn

k;n ¼ c�k;n, which would lead to the formal order of accuracy kþ 2.
The present investigation focusses on the performance of three such schemes in large-eddy simulation, i.e. the 4th-order

implicit tridiagonal dynamic finite difference scheme, and the 2nd-order and 4th-order explicit dynamic finite difference
schemes which are a subclass of the implicit methods. These finite difference approximations are described in detail in
Appendix A.

3.6. The role of the blending factor

In the previous, the blending factor f was introduced rather ad hoc in order to justify the extraction of the dynamic coef-
ficient cdyn

k;n from Eqs. (10) and (11). In the following, the role of f is further clarified by performing an asymptotic perturbation
analysis on the expression (26) for the dynamic coefficient. Consider therefore a very smooth field �uðxÞ for which
jc=jmax ! 0 such that the difference (16) may be assumed negligible, i.e. E � 0. The dynamic coefficient is then readily ob-
tained from (16) as
cdyn
k;n � �

L

M
ð32Þ
and can be reformulated as
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cdyn
k;n � c�k;n

1
1� � ; � ¼

Lþ c�k;nM

L
; ð33Þ
in which the perturbation � �
cdyn

k;n
�c�

k;n

cdyn
k;n

has a value close to zero since L � �c�k;nM for jc=jmax ! 0. Expanding expression (33)
into the MacLaurin series then yields
cdyn
k;n � c�k;n

X1
m¼0

�m: ð34Þ
Truncation of the infinite series in (34) to m ¼ 2 and substitution into expression (27) gives the finite difference
approximation
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ c�k;nD
kd

kþn�u
dxkþn

�����
D

þ akð1� a2Þ
1� ak

f �c�k;nc�2;kþnD
kþ2d

kþnþ2�u
dxkþnþ2

�����
D

þOðDkþ4Þ; ð35Þ
where f � denotes the asymptotic value of the blending factor f for jc=jmax ! 0. The value of f � is then determined by writing
out the Taylor series expansion of expression (7) up to the order OðDkþ4Þ, such that
Xq

l¼�q

al
@nu
@xn
ðxiþlÞ ¼

Xr

j¼�r

bj

Dn �uðxiþjÞ þ c�k;nD
k dkþn�u

dxkþn

�����
D

þ
X1
k0¼2

c�k0 ;kþnD
k0@

k0þkþnu
@xk0þkþn

8<:
9=;þ c�kþ2;nD

kþ2@
kþnþ2u
@xkþnþ2 þOðDkþ4Þ: ð36Þ
Identifying the corresponding terms in (35) and (36) finally gives
f � ¼ 1� ak

akð1� a2Þ
c�kþ2;n þ c�k;nc�2;kþn

c�k;nc�2;kþn

: ð37Þ
For this value of f �, expression (35) represents a standard finite difference approximation of order OðDkþ4Þ. Obviously, an
analogous relation can be obtained for the fully implicit expression (31) instead of (27). Note that if the blending factor
f –f �, then the order of accuracy in (35) reduces to OðDkþ2Þ. Moreover, it will be shown in Section 4.2, that in case
jc=jmax > 0, an optimal value f > f � can be found such that the global dispersion relation of the dynamic finite difference
scheme is minimized a priori for all scales up to the ratio jc=jmax > 0.

In further discussions it will be shown that the kth-order dynamic finite difference scheme may be advantageous in com-
parison with the ðkþ 2Þnd-order standard scheme and the kth-order Dispersion-Relation Preserving scheme, despite its
small additional cost due to the evaluation the dynamic coefficient (26). Although the expression (26) for the dynamic coef-
ficient requires the evaluation of the ðkþ nþ 2Þnd derivative, it might suffice to determine this coefficient only each few iter-
ations. Hence, the cost will then be comparable with that of the ðkþ 2Þnd-order standard scheme and the kth-order
Dispersion-Relation Preserving scheme and lower than that of the static Dispersion-Relation Preserving ðkþ 2Þnd-order
scheme in which, e.g. the ðkþ nþ 2Þnd derivative must be evaluated every iteration.

4. Fourier analysis and high-Reynolds calibration
4.1. Fourier transformation

In this section, a Fourier analysis is performed on the selected explicit and implicit dynamic finite difference approxima-
tions for the nth derivative. The following Fourier analysis focusses in particular on the dynamic coefficient since this coef-
ficient is considered crucial for obtaining good quality of the optimized finite difference approximation. The nth finite
difference derivative is represented in Fourier space as
F
dn�u
dxn

� �
¼ ðij0nÞ

n
Ff�ug; ð38Þ
where j0n denotes the modified wavenumber. Note that the real part of the modified wavenumber j0n represents dispersion
errors, whereas the imaginary part represents dissipation errors which are absent in the current symmetric or central finite
difference approximations. The expressions for the modified wavenumber of the implicit finite difference approximation
(31) yield,
j0nn ðjÞ ¼
1

in�1

Pr
j¼0cj sinðjjDÞ þ

Prþ1
j¼0 c0j sinðjjDÞPq

l¼0gl cosðljDÞ
; 8n 2 2Nþ 1 ð39Þ

j0nn ðjÞ ¼
1
in

Pr
j¼0cj cosðjjDÞ þ

Prþ1
j¼0 c0j cosðjjDÞPq

l¼0gl cosðljDÞ
; 8n 2 2N; ð40Þ
where the coefficients cl and c0l are determined by
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c0 ¼ b0 1�
cdyn

k;n

c�k;n

" #
; c00 ¼ b00

cdyn
k;n

c�k;n
; 8n; ð41Þ

cj ¼ 2bj 1�
cdyn

k;n

c�k;n

" #
; c0j ¼ 2b0j

cdyn
k;n

c�k;n
; 8n;8j > 0; ð42Þ
whereas gl are obtained by
g0 ¼ a0 �
cdyn

k;n

c�k;n
ða0 � a00Þ; 8n; ð43Þ

gl ¼ 2al � 2
cdyn

k;n

c�k;n
ðal � a0lÞ; 8n;8l > 0: ð44Þ
Obviously OðDkþ2Þ is recovered if cdyn
k;n equals the theoretical value c�k;n obtained from Taylor expansion. Nevertheless, it is

clear by now that the actual value of the coefficient cdyn
k;n will depend on the nature of the resolved field �uðxÞ, its derivatives

and the value of the blending factor f. Hence, the spectral behaviour of cdyn
k;n will heavily influence the behaviour of the mod-

ified wavenumber, and further analysis is inevitable. Since the spectral content of the flow field is mostly reflected by the
energy spectrum, an attempt is made to analyze the behaviour of the dynamic coefficient by transforming the error defini-
tion into Fourier space. Using �̂ to denote the Fourier transform, the error definition (16) is transformed to Fourier space as
bEðjÞ ¼ bL þ ck;n

cM; ð45Þ
with ck;n the constant dynamic coefficient and
bLðjÞ ¼ c�k;nðak � 1ÞDkðij0kþnÞ
kþnû; ð46ÞcMðjÞ ¼ ð1� akÞDkðij0kþnÞ

kþnû� akð1� a2ÞDkþ2fc�2;kþnðij0kþnþ2Þ
kþnþ2û; ð47Þ
corresponding to Eqs. (22) and (23). Using expression (45), an error spectrum is defined as (* denotes the complex conjugate)
EbE ðjÞ ¼ bE bE � ¼ bL bL� þ ck;n
cM bL� þ ck;n

cM� bL þ c2
k;n
cMcM�: ð48Þ
Since the basic order of accuracy k is even for central schemes, it can be verified that in that case cM bL� ¼ cM� bL and thus
EbE ðjÞ ¼ bE bE � ¼ bL bL� þ 2ck;n
cM bL� þ c2

k;n
cMcM�: ð49Þ
The optimal value for the coefficient ck;n can now be found by a least square approximation in Fourier space, defined as
@

@ck;n

Z p
D

0
EbE ðjÞdj ¼ 0: ð50Þ
Working out this integral expression leads to following expression for the ratio cdyn
k;n =c�k;n
cdyn
k;n

c�k;n
¼

R p
D
0 ðj0kþnÞ

kþn ðj0kþnÞ
kþn þ akð1�a2Þ

1�ak D2fc�2;kþnðj0kþnþ2Þ
kþnþ2

h i
ûû� djR p

D
0 ðj0kþnÞ

kþn þ akð1�a2Þ
1�ak D2fc�2;kþnðj0kþnþ2Þ

kþnþ2
h i2

ûû� dj
; ð51Þ
in which the product ûû� represents the energy spectrum EuðjÞ of the flow field uðxÞ. Hence, the ratio cdyn
k;n =c�k;n is entirely

determined by the value of the blending factor f and the instantaneous energy spectrum of the flow field. Obviously, the
instantaneous energy spectrum is characterized by a specific shape and a filter-to-grid cutoff ratio jc=jmax which can vary
in time. Once these parameters are defined, it is possible to calculate the ratio cdyn

k;n =c�k;n from the integral expression (51) and
substitute it into the expression of the modified wavenumber (39) or (40). The behaviour of expression (51) as function of
these parameters was already investigated in previous work [13]. We briefly repeat here the main conclusions.

1. It follows readily from Eq. (51) that the dynamic coefficient cdyn
k;n recovers the Taylor value c�k;n if f ¼ 0, regardless the filter-

to-grid cutoff-ratio jc=jmax.
2. For the limit jc=jmax ! 0, i.e. for very smooth fields �uðxÞ at Re! 0 which contain only few Fourier modes, the dynamic

coefficients always converge to the theoretical Taylor value c�k;n regardless of the value of the blending factor. This means
that each dynamic finite difference approximation recovers the asymptotic order of accuracy OðDkþ2Þ for very smooth
fields.4
ark that in case of a constant field �uðxÞ for which jc=jmax ¼ 0, expression (51) reduces to 0/0, and the dynamic coefficient cdyn
k;n becomes indefinite. This

ense since any finite difference approximation is exact for a constant. Hence, this particularity can be safely avoided by setting cdyn
k;n ¼ 0 or cdyn

k;n ¼ c�k;n as
L ¼ 0 and M ¼ 0.
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3. The ratio cdyn
k;n =c�k;n has to meet specific conditions in order to obtain the desired spectral characteristics. It was observed in

Fauconnier et al. [13] that if 0 6 cdyn
k;n =c�k;n < 1, the scheme’s Fourier characteristic will lie between that of the kth-order and

ðkþ 2Þnd-order standard scheme. Moreover, if cdyn
k;n =c�k;n < 0, poor Fourier characteristics are observed that lie below that

of the kth-order scheme. Hence, it is necessary that cdyn
k;n =c�k;n P 1 for all values of the wavenumber ratio jc=jmax. Further,

cdyn
k;n =c�k;n acts like a sensor for the spectral content in the flow field �u. It should therefore be a monotonic function of the

filter-to-grid cutoff-ratio jc=jmax such that each value of cdyn
k;n corresponds to a unique value of jc

jmax
. Both previous condi-

tions are mathematically expressed by
cdyn
k;n

c�k;n
P 1; ð52Þ

1
c�k;n

@cdyn
k;n

@j
P 0; 8j: ð53Þ
Obviously the restrictions (52) and (53) can be achieved by choosing a proper value of f.

In the following section, the optimal value of the blending factor f will be determined by calibrating the modified wave-
number for a turbulent spectrum at Re!1 with fixed filter-to-grid cutoff ratio jc=jmax, such that the dispersion errors are
minimal in the range ½0;jc=jmax�. The obtained value of f will merely guarantee that the dynamic scheme reaches maximum
performance for a large-eddy simulation at high Reynolds numbers with a maximum filter-to-grid cutoff ratio jc=jmax.
Moreover, in case of low Reynolds numbers or in case of direct numerical simulations, where the smallest resolved scales
or Kolmogorov scales jg are smaller than jc , the ratio cdyn

k;n =c�k;n is expected to adapt such that the dispersion errors are close
to the minimum in the range ½0;jg=jmax�.

4.2. Calibration for Re!1

In analogy with previous work [13], the optimal value of the blending factor f is determined by minimizing the kinetic
energy associated to the resulting finite difference error. This way, the energy spectrum of the flow is taken into account
as a natural weighting function. Although the method is similar to the traditional methods used by, e.g. Tam and Webb
[8] or Kim and Lee [9], the weighting function in the current method has a clear meaning, rather than being an ad hoc
function.

The spectral error between the exact nth derivative and a dynamic finite difference approximation with modified wave-
number j0n, is defined as
bEðjÞ ¼ inðjn � j0n

nðj; f ÞÞDnû: ð54Þ
The related error spectrum is then determined as
EbE ðjÞ ¼ bE bE � ¼ ðjn � j0n
nðj; f ÞÞ2D2nEuðjÞ; ð55Þ
where EuðjÞ represents the energy spectrum of the flow field uðxÞ given by the product ûû�. The optimal value for the blend-
ing factor f can be calculated by finding the minimum of the integral over all wave components, i.e. by solving
@

@f

Z p
D

0
ðjn � j0n

nðj; f ÞÞ2EuðjÞdj ¼ 0: ð56Þ
In the following, the integral in (56) is solved numerically by assuming a model spectrum. Hence, an idealized inertial range
spectrum for homogeneous isotropic turbulence is introduced, that is defined as
EuðjÞ ¼ ½1� Hðj� jcÞ�j�b ¼
j�b j < jc;

0 j > jc;

�
ð57Þ
where b determines the slope of the inertial range and the cutoff wavenumber jc indicates the highest appearing wavenum-
ber in the (resolved) field �uðxÞ. Since the purpose of this simplified energy spectrum is solely to mimic the distribution of the
turbulent energy spectrum at Re!1, no attempt is undertaken to model the energy containing range nor the dissipation
range. Indeed, it is expected that the influence of the non-universal energy containing range is negligible since it is restricted
to the largest resolved scales at small j=jmax, which are approximated sufficiently accurate by most discretization schemes.
The dissipation range is also not taken into account, since Re!1 implies that the inertial range extends to infinity and thus
no dissipation range occurs.

For the optimization of the blending factor f, a specific inertial range slope must be selected. Since the dynamic finite
difference schemes will be applied to the Navier–Stokes equations, the appropriate slopes that correspond to that of the
inertial range of respectively the turbulent velocity �uðxÞ and the turbulent pressure field �pðxÞ must be considered. Indeed,
the Navier–Stokes equations contain, besides the various discrete derivatives of the velocity field, the finite difference



D. Fauconnier et al. / Journal of Computational Physics 228 (2009) 8053–8084 8063
approximation of the pressure gradient which must also be optimized. The energy spectrum of the pressure in homogeneous
isotropic turbulence is found to have a finite inertial range that scales with j�7=3 and is followed by a bump of nearly j�5=3 at
higher wave numbers [18].

Hence, the optimization of the finite difference approximations for the pressure derivatives must be calibrated using a
j�7=3 generic spectrum, whereas the optimization of the finite difference approximations of the velocity derivatives must
be calibrated with Kolmogorov’s b ¼ �5=3 scaling for the velocity field.

Note that one could also consider a separate optimization of the finite difference approximations for the derivatives of the
turbulent viscosity, which is needed for the evaluation of the subgrid force, and which requires the spectrum of, e.g. the
strain-rate magnitude in the Smagorinsky model. However, such an optimization would lead to a lot of extra complexity
in the scheme without much benefit, and the blending factors for the derivative of the turbulent viscosity are therefore as-
sumed to be the same as for the velocity field.

Fig. 2 displays the optimal blending factors f as function of jc=jmax for the inertial range spectrum (57) with b ¼ �5=3 and
b ¼ �7=3. The behaviour of the optimal blending factor is illustrated for the 2nd- and 4th-order explicit linear dynamic
schemes and the 4th-order tridiagonal implicit dynamic scheme, which will be the subject of investigation in this work
(see Appendix A). Remark that the optimal value of f depends on the wavenumber range one wants to optimize for, indicated
by jc . In the present work, the large-eddy simulation framework with the double decomposition and sharp cutoff filtering is
considered such that all modes in the range 2

3 jmax < jc < jmax are filtered out in order to prevent aliasing errors [6]. There-
fore, the blending factor f was not determined in this high-wavenumber range. Notice that for jc=jmax ! 0, the optimal
blending factor tends to the asymptotic value f �, which can be determined via expression (37). For the explicit schemes,
the value of f � ¼ 0:2 for the 1st and 2nd derivative, whereas f � ¼ 0:089 and f � ¼ 0:1041 for respectively the 1st and 2nd deriv-
ative of the 4th-order implicit scheme. As already mentioned, it is highly desirable in large-eddy simulation to resolve as
much scales of motion, as accurately as possible, on a certain computational grid (more specific all scales up to the dealiasing
cutoff jc ¼ 2

3 jmax). Hence, in this work we prefer to determine the optimal value of the blending factors in the dynamic
schemes for the inertial range spectrum (57) with cutoff wavenumber jc ¼ 2

3 jmax. Nevertheless, we will also investigate
the performance of the dynamic schemes for the asymptotic value f � of the blending factor. Fig. 3 shows the spectral behav-
iour of the dynamic coefficient of the 4th-order explicit scheme for both choices of the blending factor, assuming the model
spectrum with b ¼ � 5

3. Table 1 gives the values of the optimal blending factors f and the corresponding coefficients cdyn
k;n for

the inertial range spectra (57) with jc ¼ 2
3 jmax and b ¼ �5=3 and b ¼ �7=3. Fig. 3 clearly indicates that no extreme and inap-

propriate values for the dynamic coefficient occur, as long as the adopted value of the blending factor f is realistic, i.e. re-
stricted to the interval f �; f 2

3 jmax
� �
 �

. Hence, the dynamic schemes are expected to remain stable during simulation
regardless the spectral content on the computational grid, and thus no additional clipping on the dynamic coefficients is re-
quired. Since it is not always desirable to optimize finite difference schemes in the entire wavenumber range (because of the
large dispersion errors which occur in 2

3 jmax < jc < jmax), one may decide to limit the dynamic coefficient nevertheless to a
maximum value, e.g. the value at the cutoff wavenumber jc ¼ 2

3 jmax. Such an approach could be useful in practical simula-
tions where typically no de-aliasing filter is applied and Fourier modes appear in the entire wavenumber range. In this work,
however, all Fourier modes in the range 2

3 jmax < jc < jmax are filtered out, making such a limitation redundant.
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Fig. 2. The optimal blending factors f as function of jc=jmax . First derivative n ¼ 1 (left) and second derivative n ¼ 2 (right). (—) 2nd-order explicit with
f � ¼ 0:2 for n ¼ 1;2; (–––) 4th-order explicit with f � ¼ 0:2 for n ¼ 1;2; (-�-�) 4th-order tridiagonal Padé with f � ¼ 0:089 for n ¼ 1 and f � ¼ 0:1041 for n ¼ 2.
The upper curves correspond to the model spectrum with b ¼ � 7

3, whereas the lower curves correspond to the model spectrum with b ¼ � 5
3.
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Fig. 3. Ratio of the dynamic coefficient to its Taylor value cdyn
k;n =c�k;n for the 4th-order explicit scheme ðk ¼ 4Þ as function of the cutoff wavenumber ratio

jc=jmax . b ¼ � 5
3 was assumed in the model spectrum. First derivative n ¼ 1 (left) and second derivative n ¼ 2 (right). The straight line (—) corresponds to

cdyn
k;n =c�k;n where f ¼ f jc ¼ 2

3 jmax
� �
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4.3. Dispersion-Relation Preserving schemes

Clearly, the dynamic finite difference approximations act as a kth-order Dispersion-Relation Preserving schemes of, e.g.
Tam and Webb [8] due to the optimization of the parameter cdyn

k;n =c�k;n. However, the optimal value of the ratio cdyn
k;n =c�k;n is

not determined a priori, but is obtained dynamically from expressions (26), according to the instantaneous spectral content
of the flow and the a priori choice of a blending factor f. In the present study, the Dispersion-Relation Preserving (DRP)
schemes are constructed by determining immediately an a priori optimal value for the ratio cdyn

k;n =c�k;n instead of an optimal
blending factor f. Since most often, the uniform inertial range spectrum with slope b ¼ 0 is implicitly assumed for the con-
struction of DRP schemes, e.g. [8], it is also used for the derivation of these schemes in this paper. Table 1 gives an overview
of the values of the coefficients ck;n for the uniform energy spectrum at jc ¼ 2

3 jmax.

4.4. Fourier characteristics

Figs. 4–6 display, respectively, the error on the modified wavenumbers ðn ¼ 1;2Þ for the 2nd- and 4th-order explicit dy-
namic schemes and the 4th-order dynamic Padé scheme (as described in Appendix A). For the determination of the constant
dynamic coefficient, the inertial range spectrum (57) with slope b ¼ �5=3 and a filter-to-grid cutoff-ratio jc

jmax
¼ 2

3 are as-
sumed. It is observed from the figures that the spectral characteristics of the dynamic schemes are close to that of their Dis-
persion-Relation Preserving counterparts, especially for the higher-order schemes like the 4th-order dynamic Padé scheme,
were the curves almost collapse. This indicates that the slope of the energy spectrum becomes less important in the optimi-
zation procedure in case of higher-order basic schemes, since these schemes perform already well. This observation is con-
firmed by the values of the dynamic coefficients in Table 1 for various slopes b.
Table 1
Numerically obtained optimal blending factors f and corresponding values of cdyn

k;n for the inertial range model spectrum at jc ¼ 2
3 jmax .

Slope Scheme n ¼ 1 n ¼ 2

f cdyn
k;1

f cdyn
k;2

b ¼ � 5
3

Explicit k ¼ 2 0.2555 �0.3088 0.2339 �0.1310
Explicit k ¼ 4 0.2298 0.0740 0.2241 0.0203
Implicit k ¼ 4 0.1241 0.0121 0.1363 0.0069

b ¼ � 7
3

Explicit k ¼ 2 0.2654 �0.2966 0.2353 �0.1293
Explicit k ¼ 4 0.2329 0.0724 0.2248 0.0201
Implicit k ¼ 4 0.1261 0.0120 0.1370 0.0069

b ¼ 0 Explicit k ¼ 2 �0.3344 �0.1345
Explicit k ¼ 4 0.0775 0.0206
Implicit k ¼ 4 0.0119 0.0069
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5. Taylor–Green vortex: transition into turbulence

The Taylor–Green vortex flow was selected to examine the performance of the developed dynamic finite difference
approximations. The viscous Taylor–Green vortex flow, first introduced in 1937 by Taylor and Green [19], is considered
as a prototype system that describes the production of small-scale eddies due to the mechanism of vortex-line stretching
in homogeneous isotropic turbulence [20,14]. It is one of the simplest environments to study the breakdown process of
large-scale vortices into successively smaller ones, and the resulting homogeneous isotropic turbulence. According to Bra-
chet et al. [14], the generalized Taylor–Green vortex is defined as the periodic three-dimensional incompressible flow, gov-
erned by the Navier–Stokes equations and the continuity equation
Fig. 4.
n ¼ 2 (r
with k
@ui

@xi
¼ 0; ð58Þ

@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ m

@2ui

@x2
j

; ð59Þ
which develops from the initial solenoidal velocity field uðx; t ¼ 0Þ (in non-dimensional form)
u1ðx; 0Þ ¼
2ffiffiffi
3
p sin cþ 2p

3

	 

sinðx1Þ cosðx2Þ cosðx3Þ;

u2ðx; 0Þ ¼
2ffiffiffi
3
p sin c� 2p

3

	 

cosðx1Þ sinðx2Þ cosðx3Þ;

u3ðx; 0Þ ¼
2ffiffiffi
3
p sinðcÞ cosðx1Þ cosðx2Þ sinðx3Þ:

ð60Þ
The parameter c determines the shape and orientation of the initial anisotropic vortex structure. The initial pressure field
pðx; t ¼ 0Þ, that follows from the initial solenoidal velocity field, is obtained by solving the Poisson equation, yielding
pðx; 0Þ ¼ p0 þ
1� cosð2cÞ

24
½cosð2x1Þ cosð2x2Þ þ 2 cosð2x3Þ� þ

2þ cosð2cÞ þ
ffiffiffi
3
p

sinð2cÞ
48

½cosð2x1Þ cosð2x3Þ

þ 2 cosð2x2Þ� þ
2þ cosð2cÞ �

ffiffiffi
3
p

sinð2cÞ
48

½cosð2x2Þ cosð2x3Þ þ 2 cosð2x1Þ�; ð61Þ
where the arbitrary mean pressure component p0 is chosen to be zero in this work.
By taking the Fourier transform of the initial velocity field (60), it can be shown that the initial condition (60) corresponds

to eight Fourier modes, located at the positions j ¼ ð�1;�1;�1Þ. Hence, condition (60) represents a single vortex scale which
is located at the spherical wavenumber-shell with radius jjj ¼

ffiffiffi
3
p

. It was further verified that the Fourier modes related to
the pressure field are located on two spherical wavenumber-shells with respective radius jjj ¼

ffiffiffi
6
p

and jjj ¼ 3. The total
amount of kinetic energy in the initial flow is obtained as
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kðt ¼ 0Þ ¼ 1
8p3

ZZZ2p

0

1
2

uiðx;0Þuiðx; 0Þdx ¼ 1
8
; ð62Þ
whereas the total amount of initial dissipation is obtained as
eðt ¼ 0Þ ¼ 1
8p3

ZZZ2p

0

m
@ui

@xj
ðx; 0Þ @ui

@xj
ðx;0Þdx ¼ 3

4
1

Re
: ð63Þ
Brachet et al. [14] defined the Reynolds number as Re ¼ 1=m, noting that the length and velocity scales of the initial flow (60)
are of order 1. In the initial stages of the simulation, the large-scale vortex flow is highly organized and thus characterized as
laminar. However, the non-linear term in the Navier–Stokes equations (59) starts to generate successively smaller structures
which interact with the large scales. If the Reynolds number is large enough, this results into a process of vortex-stretching
and eventually into a breakdown of the large scales into smaller ones which is interpreted as turbulence. Therefore, the
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Taylor–Green flow is believed to describe the fundamental process of natural transition into isotropic turbulence. This tran-
sitional behaviour is determined entirely by the choice of the Reynolds number. Brachet et al. [14] observed that for
Re P 500 the small-scale structures in the Taylor–Green flow undergo profound changes. Indeed, for high Reynolds num-
bers, the turbulent flow becomes nearly isotropic at t ¼ 7 with no memory of the initial conditions, and moreover, the dis-
sipation rate reaches a maximum at t ¼ 9. However, for low Reynolds numbers, the maximum dissipation occurs earlier,
whereas the flow retains some of its initial anisotropy at all times. A clear inertial range behaviour was observed once
Re P 1000. For t !1, the isotropic turbulence, which is not maintained by an external forcing, dies out due to viscosity.

In the current work, the Reynolds number is set to Re ¼ 1500, which corresponds to a Reynolds number based on the
transversal Taylor micro-scale Rek � 55. Following Brachet et al. [14], the shape factor is chosen c ¼ 0. The resulting turbu-
lent flow field is expected to exhibit an inertial range that corresponds to the Kolmogorov scaling j�5=3. In the following, the
setup of the direct numerical simulation and the large-eddy simulations of the selected Taylor–Green vortex flow at
Re ¼ 1500 is discussed. The DNS-solution will serve here as a reference solution against which the various LES-solutions
are compared.

5.1. Direct numerical simulation

For the direct numerical simulation of the periodic Taylor–Green vortex flow at Re ¼ 1500, the system of Eqs. (58) and
(59) are directly solved on a uniform computational grid with 2563 nodes. This implies that only the first 1283 Fourier modes
in the flow field are resolved, which should be sufficient for Rek � 55. These settings compare well to those of Brachet et al.
[14], who used a uniform grid with N3 ¼ 2563 for the DNS of the Taylor–Green vortex flow with Reynolds numbers up to
Re ¼ 3000. The partial derivatives in (58) and (59) are evaluated in Fourier space by a pseudo-spectral method in order to
exclude finite difference errors from the solution. Further, the skew-symmetric formulation is adopted for the discretization
of the nonlinear term such that it conserves the kinetic energy. The Navier–Stokes equations are solved by means of the pres-
sure-correction algorithm, in which the pressure is obtained from a Poisson equation. The time stepping is performed with
the explicit low-storage 4-stage Runge–Kutta method with standard coefficients 1

4 ;
1
3 ;

1
2 ;1


 �
. In order to guarantee the numer-

ical accuracy of the adopted Runge–Kutta time-stepping method, a sufficiently small time-step Dt ¼ 0:005 was determined
such that the dispersion and dissipation errors related to this method remain sufficiently low. The corresponding Courant–
Friedrichs–Lewy number does not exceed the initial value, i.e. CFL 6 0:2037 during the simulation.

The decay of the homogeneous isotropic turbulence, that results from the Taylor–Green flow, is followed until t ¼ 14:25.
Fig. 7 illustrates the spectrum development of the resolved velocity field uðx; t ¼ tjÞ. It is seen that the energy spectrum
develops from a single characteristic Fourier mode toward an entire range of modes. The temporal evolution of the decaying
kinetic energy and the dissipation rate are shown in Fig. 8. It is verified that the evolution of the dissipation rate eðtÞ is in
close agreement with that obtained by Brachet et al. [14] for Re ¼ 1600. One observes that the dissipation rate eðtÞ rises rel-
atively sharply around t P 4 and reaches a maximum at t ¼ 9. Brachet et al. [14] reported that the Taylor–Green flow pattern
becomes heavily distorted around t ¼ 7, which may be interpreted as turbulence. The coherent structure itself, finally breaks
down around t ¼ 8. Therefore, it is expected that for t P 9, the flow is fully turbulent and nearly-isotropic.

5.2. Large-eddy simulation

The governing equations for the large-eddy simulation are obtained by applying a convolution filter to the Navier–Stokes
equations (58) and (59). In the current context of the Taylor–Green flow in a homogeneous periodic box, the homogeneous
sharp cutoff filter Gðx;jcÞ is favoured in which the cutoff wavenumber jc ¼ 2

3 jmax [6]. The velocity field is then decomposed
as
uðx; tÞ ¼ �uðx; tÞ þ u0ðx; tÞ; ð64Þ
where �uðx; tÞ denotes here the low-pass filtered velocity field (large scales) and u0ðx; tÞ denotes the high-pass filtered velocity
field (small scales) such that in Fourier space
�̂uðj; tÞ ¼ bGðj;jcÞûðj; tÞ ¼ ûðj; tÞ; 0 6 j 6 jc; ð65Þ
û0ðj; tÞ ¼ ½1� bGðj;jcÞ�ûðj; tÞ ¼ ûðj; tÞ; jc 6 j 6 jg: ð66Þ
The filtered Navier–Stokes equations (58) and (59) are then obtained as
@�ui

@xi
¼ 0; ð67Þ

@�ui

@t
þ @

�ui�uj

@xj
þ @

�sij

@xj
¼ � @

�p
@xi
þ m

@2�ui

@x2
j

; ð68Þ
where �pðx; tÞ denotes the filtered pressure field and �sij ¼ uiuj � �ui�uj denotes the residual-stress tensor. Formulation (68) is
typically known as the double decomposition. The choice of the double decomposition framework in which the nonlinear
term is filtered explicitly with the sharp cutoff filter is motivated by two arguments. First, the explicit filtering up to
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jc ¼ 2
3 jmax allows to rigorously preclude aliasing, as argued by Orszag [6]. Secondly, several authors [2–4,21–27] report that

the explicit filtering procedure allows to eliminate numerical discretization errors in the high-wavenumber region ½jc;jmax�.
Indeed, since finite difference schemes do not perform well in the wavenumber range ½jc;jmax�, the accuracy of the predicted
scales there would be very poor.

Since the smallest dissipative motions remain unresolved in LES, their effect, represented by the residual stress tensor �sij

on the resolved scales requires proper modeling. Two models are considered in this work: the dynamic Smagorinsky model
and the multiscale Smagorinsky model. The dynamic Smagorinsky model for the residual stress tensor is expressed as func-
tion of the resolved strain rate tensor Sij and the strain rate magnitude S as
�sij ¼ �2meSij ¼ �2C2
s D

2
c SSij; ð69Þ
in which the value of the Smagorinsky constant C2
s is determined by the dynamic procedure of Germano et al. [28]. This pro-

cedure, which makes use of a secondary filter Gðx; kcÞwith cutoff wavenumber kc 6 jc , guarantees that the magnitude of the
subgrid dissipation is adapted appropriately according to the resolved scales in the flow. This implies that the residual stress
model is only engaged when the resolution is insufficient to resolve all scales of motion. Moreover, the dynamic procedure is
expected to return to the theoretical value Cs ¼ 0:17 found by Lilly [29] as soon as the flow is fully turbulent. The second
model is the multiscale Smagorinsky model. This model, proposed by Hughes et al. [30,31], relies on an ab initio scale sep-
aration of the resolved velocity field, by segregating the resolved scales into large resolved scales and small resolved scales,
through an additional projective filtering operator Gðx; kcÞwith cutoff wavenumber kc 6 jc . Hence, the resolved velocity field
�uðx; tÞ can be divided into
�uðx; tÞ ¼ ~uðx; tÞ þ u00ðx; tÞ; ð70Þ
where ~uðx; tÞ ¼ ~�uðx; tÞ indicates the largest resolved scales and u00ðx; tÞ denotes the smallest resolved scales, such that
~̂uðj; tÞ ¼ bGðj; kcÞûðj; tÞ; 0 6 j 6 kc; ð71Þ
û00ðj; tÞ ¼ ½1� bGðj; kcÞ�bGðj;jcÞûðj; tÞ; kc 6 j 6 jc: ð72Þ
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Under the assumption that the distant triadic interactions, i.e. interactions between the largest resolved scales ~u and the
residual scales u0, have a negligible influence on the large scale dynamics, only the contributions of the local triadic interac-
tions between the smallest resolved scales u00 and the residual scales u0 are modeled. Hughes et al. [30,31] proposed to close
the residual stress tensor of the small-scale part by an eddy-viscosity model of the Smagorinsky type. In this work the mul-
tiscale Smagorinsky model, which is given by
5 Not
integrat
�sij ¼ �2ðmeS00ijÞ
00 ¼ �2C2

s;mD2
c ðS

00S00ijÞ
00
; ð73Þ
will be considered. Note that the total residual stress model is projected again to the small scale velocity field due to the
band-pass filter ð�Þ00. The model constant Cs is evaluated analogously as done by Lilly [29], although here, both cutoff wave-
numbers need to be accounted for. This results into expression
Cs;m ¼ Cs
jc

kc

jc

kc

	 
4=3

� 1

" #�3=4

; ð74Þ
for the Smagorinsky coefficient [30]. It can be verified that for kc < jc; Cs;m is larger than the standard Smagorinsky coefficient
Cs � 0:17.

In the present work, the large-eddy simulation of the periodic Taylor–Green vortex flow at Re ¼ 1500ðRek � 55Þ is per-
formed on the uniform computational grid with 643 nodes and with grid cutoff wavenumber jmax ¼ p=D ¼ 32. The cutoff
wavenumber kc that determines the secondary sharp cutoff filter in the dynamic procedure or the sharp cutoff scale-sepa-
ration filter in the multiscale model is determined as kc ¼ jc=2 ¼ jmax=3. The LES-equations (67) and (68) are solved with the
pseudo-spectral method on the one hand and with various finite difference methods, including the dynamic finite difference
method on the other hand. Similar to the direct numerical simulation, the skew-symmetric formulation is adopted for the
discretization of the nonlinear term, whereas the time stepping is performed again with the explicit low-storage 4-stage
Runge–Kutta method with standard coefficients 1

4 ;
1
3 ;

1
2 ;1


 �
and with a time step Dt ¼ 0:005.5
5.3. Implementation of the dynamic finite difference scheme

Before analyzing the results, some particularities must be addressed concerning the implementation of the dynamic finite
difference approximations for the large-eddy simulation of the Taylor–Green vortex flow. Indeed, since the spectra related to
fields ui and ujui are substantially different, the value of the dynamic coefficients cdyn

k;n in the dynamic finite difference approx-
imations of the advective operator is not the same as the one obtained for the divergence operator. As a consequence, the
skew-symmetric formulation of the nonlinear term, constructed by a fixed weighting between the advective and divergence
formulation, looses the a priori conservation of kinetic energy [13]. Hence, in order to preserve the skew-symmetry property,
and thus the conservation of kinetic energy, the same dynamic coefficient cdyn

k;n as obtained for the advective operator is used
e that the time-step could be increased in case of LES. In this work, however, the same time-step as for the DNS is preferred in order to avoid time-
ion ambiguities.
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for the divergence operator. Such an approach is equivalent to the traditional discretization approach of the skew-symmetric
operator using standard schemes or prefactored optimized schemes.

In the current study, each partial derivative in the Navier–Stokes equations or the Poisson equation is discretized straight-
forwardly by using the appropriate dynamic finite difference approximation. However, this implementation involves the cal-
culation of multiple dynamic coefficients at each Runge–Kutta step. An overview of all required dynamic coefficients in the
system of equation is given below.

1. The finite difference approximation of the nonlinear term in the Navier–Stokes equations requires the calculation of nine
dynamic coefficients, i.e. one per component of the skew-symmetric operator.

2. Similarly, three dynamic coefficients are needed for the finite difference approximation of the pressure gradient in the
Navier–Stokes equations.

3. Since the molecular viscosity term uses the Laplacian of the velocity field, again nine coefficients must be determined.
4. Although the subgrid force is supposed to sufficiently dissipate the small scales corresponding to high wavenumber Fou-

rier modes, direct evaluation of dsij

dxj
would result into weak dissipation due to the poor Fourier characteristics of the suc-

cessive derivative operators. Moreover, spurious p-modes at j ¼ jmax, are not detected by the dissipative operator dsij

dxj
,

since the Fourier characteristics vanish for these modes. Hence, they are not eliminated from the solution, unless explicit
filtering is used. It is known that these p-waves severely pollute the solution and eventually destabilize the algorithm. In
order to guarantee the compactness, i.e. minimal stencil width, of the discretization of the subgrid force, it is imple-
mented in this work as
dsij

dxj
¼ �2

dme

dxj
Sij � 2me

d2�ui

dx2
j

: ð75Þ
Due to this discretization, three additional dynamic coefficients are required for the partial derivatives of the turbulent
viscosity. For the discretization of the Laplacian in expression (75), the same coefficients are used as those obtained
for the molecular term.

5. As mentioned earlier, the Pressure-Correction algorithm is used in order to impose the continuity constraint. This algo-
rithm involves the solution of the Poisson equation for the pressure correction. For the construction of the Poisson matrix,
the stencils of the Poisson operator must be specified a priori and thus nine values of the dynamic coefficients must be
determined in advance. However, since the pressure correction field is not known a priori, these coefficients can only be
obtained from the pressure at the previous iteration level.

6. Finally, for the approximation of the divergence operator of predictor velocity u�i in the Poisson equation, three dynamic
coefficients must be calculated.

The above considerations bring the total amount of required dynamic coefficients per Runge–Kutta step to 36. The optimal
blending factors f, used in the dynamic finite difference approximations of the pressure and velocity related terms can be found
in Table 1.

The current straightforward implementation of the dynamic finite difference schemes requires the calculation of 36 dy-
namic coefficients at each Runge–Kutta step, that is 4 times per time step, leading inevitably to a significant computational
overhead. It was found for the large-eddy simulation of the Taylor–Green vortex, that the total computational time was about
68% higher for the dynamic schemes in comparison with the DRP schemes and the standard schemes. Despite the good per-
formance of the dynamic schemes, which was already demonstrated in Fauconnier et al. [13], an overhead of 68% may be con-
sidered prohibitive for practical computations. However, it might sufficient to calculate each dynamic coefficient only once
per time step, or even once per few time steps, depending on the time increment Dt and the time scale sg of the smallest re-
solved eddies. Indeed, since the time scale ratio h ¼ Dt=sg must be chosen sufficiently small in order to avoid numerical dis-
sipation, one can expect that the flow physics do not change much during one time step. Hence, evaluating the coefficients
each 1=h time steps, i.e. after one time scale sg, should be sufficient. In this work, all 36 dynamic coefficients are evaluated
only every 10 time steps. In that case, the computational overhead is only 1.7%. In order to reduce the computational
overhead even further, one could think of monitoring only one single dynamic coefficient every few time steps, and adjust
the others as soon as the change of the monitored coefficient becomes significant. This is however, not considered in this work.

6. Quantification of numerical errors

Before assessing the quality of the dynamic finite difference approximations in the LES of the Taylor–Green vortex flow,
an appropriate and consistent evaluation method must be defined that allows to quantify the different sources of error due
to modeling and numerical approximation, and their interactions. In order to separate modeling and numerical errors the
error decomposition method of Vreman et al. [15] and Meyers et al. [16,32,1] is adopted. Once the error sources are identified
by this separation method, a certain error norm can be defined which quantifies the magnitude of the respective error
sources. The described approach is further discussed in more detail.

Consider the reference solution, obtained by, e.g. direct numerical simulation, which is characterized by the viscous scale
jg. Further consider a specific flow variable of interest /. Using the same terminology as in [16,32,1], the total error on the
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variable of interest / is decomposed into a modeling error contribution and a numerical error contribution, leading to the
expressions jc ¼ p

Dc
;jmax ¼ p

D

� �

e/;totalðjc;jmaxÞ ¼ /s jg;

3
2
jg

	 

� �/fdðjc;jmaxÞ; ð76Þ

e/;modelðjc;jmaxÞ ¼ /s jg;
3
2
jg

	 

� �/sðjc;jmaxÞ; ð77Þ

e/;numðjc;jmaxÞ ¼ �/sðjc;jmaxÞ � �/fdðjc;jmaxÞ; ð78Þ

where /s jg;

3
2 jg

� �
represents the filtered spectral DNS solution, �/fdðjc;jmaxÞ represents the finite difference LES solution with

cutoff jc on an LES grid with maximum wavenumber jmax and �/sðjc;jmaxÞ represents the spectral LES solution with cutoff
wavenumber jc and numerical resolution jmax determined by the LES grid. Note that this solution would be equivalent with
the finite difference LES-solution on an infinitely fine grid �/fdðjc;j1Þ. The modeling error e/;model is related to the adopted
subgrid closure, whereas the numerical error e/;num contains contributions of the aliasing errors as well as discretization er-
rors or finite difference errors. In case proper de-aliasing is applied through explicit filtering of the nonlinear term, the
numerical e/;num reduces exactly to the finite difference discretization errors.

In analogy with the work of Meyers et al. [33], the different errors are then quantified using the mathematics-based and
physics-based error definitions. Two mathematics-based error definitions are defined, i.e. the spectrum of the pointwise error
e/ of a variable /
Ee/ ðj; tÞ ¼ ce/ðj; tÞce/
�ð�j; tÞ; ð79Þ
and its magnitude ke/
ke/
ðtÞ ¼

ZZZjmax

0

Ee/
ðj; tÞdj: ð80Þ
Note that the magnitude ke/
is related to the L2-norm, as L2ðtÞ ¼ ð2pÞ3

ffiffiffiffiffiffiffiffiffiffiffi
kuðtÞ

p
and that this error has always a positive sign.

The physics-based error definitions are based on the error of the energy spectrum of the velocity field, which is given by
eEðj; tÞ ¼ DEuðj; tÞ ¼ D½/ðj; tÞ/�ðj; tÞ�: ð81Þ

Three global physics-based error norms are then introduced, i.e. the total error on the longitudinal integral length scale L11,
the total error on the kinetic energy k, and the total error on the dissipation rate e, given by respectively
eLðtÞ ¼ DL11 ¼
ZZZjmax

0

j�1DEuðj; tÞdj; ð82Þ

ekðtÞ ¼ Dk ¼
ZZZjmax

0

DEuðj; tÞdj; ð83Þ

eeðtÞ ¼ De ¼
ZZZjmax

0

j2DEuðj; tÞdj: ð84Þ
Remark that the sign of ek and ee could be either positive or negative, enabling to see interactions between different error
sources. Time-integration of these time-dependent error norms results in a single-value error norm. Following Meyers
et al. [33], this norm is defined as
d/ ¼

R tmax

0

RRRjmax

0
jqðEu;ref ðj; tÞ � Euðj; tÞÞdj

" #2

dtR tmax

0 ½jqEu;ref ðj; tÞdj�2dt

8>>>>><>>>>>:

9>>>>>=>>>>>;

1=2

ð85Þ
in which the parameter q ¼ �1; 0;2 determines the specific physics-related quantity /, i.e. L11, k or e. The reference spectrum
Eu;ref ðj; tÞ can either be that of the spectral LES in case of numerical errors, or that of the DNS in case of modeling errors and
total errors.

It is emphasized that the mathematics-based error definitions reflect both amplitude and phase errors in the solution
whereas the physics-based definitions represent only errors on the amplitude. Both error definitions are used further for
analyzing the performance of finite difference schemes, and interactions with the subgrid model.

7. Numerical results

7.1. Modeling error contributions

Before assessing the quality of the dynamic finite difference scheme, the modeling errors related to the dynamic Smago-
rinsky model and the multiscale model are briefly discussed. As mentioned before, the modeling error contributions and the
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numerical error contributions are separated by the decomposition of Vreman et al. [15] and Meyers et al. [16,32,1]. Fig. 9
shows the decay of resolved kinetic energy kr and the relative percentage of resolved kinetic energy for the filtered DNS solu-
tion and the spectral LES solutions with the dynamic Smagorinsky model and the multiscale Smagorinsky model. For homo-
geneous isotropic turbulence, the kinetic energy decays according to the power law k 
 t�n. The decay exponents for the DNS
and LES simulations of the Taylor–Green vortex are found to lie in between n ¼ 1:3, which is generally accepted as the decay
exponent at high Reynolds numbers, and n ¼ 2:5, which is the decay exponent in the final period of decay where the viscous
effects become dominant. This result indicates that the Reynolds number is rather low such that viscous effects are not neg-
ligible. According to Pope [35], about 80% of the kinetic energy should be resolved in order to have a good large-eddy sim-
ulation. Although the filtered DNS solution indicates that at least 98% of the kinetic energy may ideally be resolved on the 643

LES-grid, both spectral LES solution resolve less kinetic energy. Using the dynamic Smagorinsky model, only 78% of the
kinetic energy is resolved at the end of the simulation, despite the use of a dynamic procedure. Indeed, it was verified that
the predicted dynamic coefficient Cs, which is zero at the beginning of the simulation, remains substantially below the
theoretical value Cs ¼ 0:17 obtained by Lilly [29] when the flow is fully turbulent. On the other hand, the multiscale model
performs better and at the end of the simulation, the resolved kinetic energy decreases to about 85%.

Fig. 10 displays the resolved dissipation rate er , accentuating the modeling error on the smallest resolved scales, and the
total dissipation rate etot which contains resolved and subgrid contributions. The results show that the multiscale model per-
forms better than the dynamic Smagorinsky model. However, the total dissipation rate etot and the resolved kinetic energy kr

indicate that the underlying eddy-viscosity model is too dissipative, despite the use of a multiscale technique or a dynamic
procedure. Indeed, both modeling techniques lead to an overestimation of the turbulent dissipation in the early transitional
stages ðt 6 6Þ, and although the prediction of the dissipation is much better in the turbulent stages, the loss of kinetic energy
in the early transitional stages cannot be recuperated. In the past decades, many new subgrid modeling approaches were
therefore developed. In some of them, the subgrid scales are modeled directly for the primitive variables in the LES equa-
tions. Such methods rely on the reconstruction of scales in the velocity field, e.g. by means of a deconvolution procedure
[36]. A more comprehensive review is given by Domaradzki and Adams [37]. Such methods are claimed to be less dissipative
than the basic eddy viscosity models and therefore advantageous for application in large-eddy simulation. One of these tech-
niques is the adaptive local deconvolution method (ALDM) of Hickel et al. [34]. This method involves a solution-adapted
deconvolution operator that controls the (dissipative) truncation error in the framework of implicit LES and the deconvolu-
tion parameters within the method are selected by analysis of the spectral numerical viscosity. This new approach, which
was claimed to perform at least as well as the established models, was successfully applied to the large-eddy simulation
of the Taylor–Green vortex at Re ¼ 1600 [34] on a 643-grid. Despite the small difference in Reynolds number, the ALDM-re-
sults may be compared to the results in the current study. Fig. 10 shows reasonable good agreement between the resolved
and total dissipation rates obtained by the Smagorinsky models and that of the ALDM method. However, whereas the re-
solved dissipation for the eddy-viscosity models is slightly too high in the pre-transitional zone ð4 6 t 6 7Þ, leading to a
reduction in resolved kinetic energy, the resolved dissipation for the ALDM method is slightly too low there, leading to an
increased resolved kinetic energy. Nevertheless, Fig. 9, right, clearly shows that the modeling errors of both eddy-viscosity
models and the ALDM method have comparable magnitudes, but different signs. This leads us to conclude that the results
obtained with both eddy viscosity models are certainly acceptable, and that the modeling errors are comparable to those in
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other types of large-eddy simulations with non-eddy-viscosity models. In the following error-assessment, the multiscale
model is considered to be better than the dynamic model, due to the smaller modeling errors. Fig. 11 displays a snapshot
of the energy spectra at time t ¼ 7, i.e. when the flow is going into transition and at time t ¼ 14 when the fully developed
turbulence is decaying. It is seen that the dynamic Smagorinsky model is too dissipative in the entire wavenumber range. In
contrast, the multiscale model leads to a slight energy pile-up around the scale separation cutoff wavenumber jmax=3ð Þ, e.g.
at t ¼ 14. Although a significant reduction of subgrid dissipation on the smallest resolved scales is seen, we also observe a
slightly increased dissipation on the largest resolved scales. This is rather surprising, since the multiscale model does only
dissipate in the high wavenumber region jmax

3 ; 2jmax
3


 �
. Although the precise reason for this phenomenon remains somewhat

unclear at the moment, it is not essential for the further discussion.
7.2. Mathematics-based numerical error contributions

The quality assessment of the dynamic finite difference approximations is initiated by comparing the numerical errors
with those of the standard schemes and DRP schemes. Fig. 12 displays the global magnitude of the numerical errors (related
to L2-norm) on the resolved velocity field �uðx; tÞ, obtained from the large-eddy simulation with the dynamic Smagorinsky
model. Analogous results were obtained with the multiscale model. Since the error profiles on the pressure field pðx; tÞ
are again very similar for both models, they are not shown here. It is observed that the dynamic schemes recover the asymp-
totic order of accuracy in the early stages of the simulation, i.e t 6 2, where the flow is still smooth and resolved with DNS-
resolution. This is in contrast to the Dispersion-Relation Preserving schemes, which are suboptimal in these situations, since
they have an a priori optimization to a fully developed uniform spectrum. As soon as the resolution of the computational grid
becomes inadequate to resolve all scales in the flow (the simulation shifts from DNS-resolution to LES-resolution at t � 2),
the dynamic schemes adapt to the instantaneous solution and achieve an accuracy which is at least as good, or better than
that of the Dispersion-Relation Preserving schemes at all times 2 6 t 6 14:25. It is emphasized that the dynamic schemes
switch form higher-order accuracy to DRP-mode as soon as the smallest resolved scales, which are marginally resolved, be-
come important in the flow, even when the flow is still laminar at that time. Indeed, although the energy spectrum of a lam-
inar flow may not be characterized by an inertial range as for a turbulent flow, it still contains a spectrum of scales which
must be resolved accurately, and since the value of the dynamic coefficients is correlated to the energy spectrum, the scheme
adapts even in case of laminar flows. This indicates that the dynamic schemes respond to both the mean flow phenomena
and turbulence. Studying the results in more detail, the 2nd-order explicit dynamic scheme is observed to achieve the accu-
racy of the 8th-order central scheme, which is better than that of the corresponding 2nd-order DRP scheme. The latter has a
comparable accuracy to that of the standard 6th-order explicit scheme. The 4th-order explicit dynamic scheme obtains
slightly better quality than the corresponding DRP scheme, which fluctuates between that of the 8th- and 10th-order stan-
dard scheme, although the difference becomes very small. Further the performance of the 4th-order dynamic implicit finite
difference approximation almost collapses with that of the 4th-order implicit Padé scheme and both clearly outperform all
other schemes, including the standard tridiagonal Padé scheme. For a fully developed inertial range spectrum the difference
in accuracy between the dynamic finite difference approximations and the DRP schemes decreases with increasing order of
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accuracy of the underlying finite difference approximation. This also shows that the importance of the inertial range slope b
in calibration procedure for the dynamic schemes at Re!1 decreases quite fast for higher-order dynamic schemes. This is
in agreement with the observations in Figs. 4–6. Further, it is noticed that the dynamic schemes and the DRP schemes lead to
a significant gain in numerical accuracy in comparison with the standard schemes. This conclusion supports the observations
of Berland et al. [5]. Fig. 13 illustrates the more detailed energy spectrum of the numerical errors at the early stages of the
simulation ðt ¼ 1Þ and when the flow is fully turbulent ðt ¼ 9Þ. One can see that in the early stages of the simulation ðt ¼ 1Þ,
the dynamic schemes are clearly adapted to the low-wavenumber content on the computational grid, whereas for the fully
developed turbulent flow (t ¼ 9), the dynamic schemes are optimized for the inertial range turbulent spectrum. The results
above demonstrate already the ability of the dynamic finite difference schemes to adapt to the changes in the energy spec-
trum or to changes in the filter-to-grid cutoff ratio jc=jmax.

To illustrate further the adaptivity of the dynamic schemes, Fig. 14 shows the various ratios of the dynamic coefficient to
its Taylor value cdyn

k;n =c�k;n, for the 4th-order explicit dynamic finite difference approximation of the skew-symmetric operator
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are equal, more specifically components

ði; jÞ ¼ ð1;1Þ ¼ ð2;2Þ; ð1;2Þ ¼ ð2;1Þ; ð1;3Þ ¼ ð2;3Þ and ð3;1Þ ¼ ð3;2Þ are equal. Therefore, these dynamic coefficients are not
explicitly shown in Fig. 14. First, the scheme recovers the asymptotic order of accuracy at the initial stages of the simulation,
since cdyn

k;n =c�k;n ! 1. Further, a sharp increase of the coefficient is observed around 1 6 t 6 2. This stems from the fact that the
simulation shifts around that time from DNS-resolution to LES-resolution, although the flow is still laminar. Notice that the
coefficients of the different contributions increase independently from each other, due to the anisotropy of the initial Taylor–
Green vortex flow. This clearly illustrates the behaviour of the dynamic schemes to smoothly adapt according to the specific
properties of the flow on the computational grid, including global anisotropy. Hence, such schemes might provide an addi-
tional advantage for accurate simulations of more complex anisotropic flows. In the interval 5 6 t 6 8, where the flow goes
into transition, the dynamic coefficients seem to reach an intermediate plateau. Once the coherent structures break down
ðt � 8Þ, the dynamic coefficients cdyn

k;n increase slightly and approach the theoretical value found in Table 1.
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illustrated. The optimized coefficient (Table 1) for the corresponding 4th-order Dispersion-Relation Preserving scheme, is shown for comparison (� � �).
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In order to investigate the sensitivity of the constructed dynamic finite difference schemes to the value of the blending
factor f, the large-eddy simulations with the dynamic Smagorinsky model and the dynamic finite difference schemes were
repeated, but now with the asymptotic value of the blending factor, i.e. f � ¼ f ðjc ¼ 0Þ, instead of the optimized value
f ðjc ¼ 2

3 jmaxÞ (see Fig. 2). Fig. 15 shows the numerical errors of the 2nd- and 4th-order explicit dynamic schemes and of
the 4th-order dynamic tridiagonal Padé scheme, each one with the asymptotic value of the blending factor, i.e.
f � ¼ f ðjc ¼ 0Þ. A certain sensitivity of the dynamic schemes to suboptimal values of the blending factor f is noticed. However
the penalization on the accuracy due to this suboptimal choice is small. Indeed, the sensitivity is very small for the low-order
dynamic schemes, but increases if the basic order increases. The largest penalization in accuracy is observed for the 4th-or-
der tridiagonal dynamic Padé scheme. Nevertheless, the accuracy improvement in comparison with the standard 6th-order
tridiagonal Padé scheme is still very large. One can conclude, that the exact value of the blending factor is not crucial for the
success of the dynamic schemes, and even suboptimal values can be used safely.
7.3. Physics-based numerical errors and their interaction with the modeling errors

In the previous discussion, the mathematics-based error definitions were used to quantify the numerical errors of the var-
ious finite difference schemes. In the following, the physics-based error definitions will be used to evaluate the various finite
difference schemes. The impact of the numerics on the longitudinal integral length scale L11ðtÞ and the kinetic energy kðtÞ is
demonstrated in Fig. 16 for the large-eddy simulation of the Taylor–Green vortex with both the dynamic and multiscale
Smagorinsky model. Results on the dissipation rate eðtÞ are very similar. Further, results are only shown for the turbulent
period of the flow at 7 6 t 6 14:25, since at earlier times the dynamic finite difference schemes, which are investigated in
this work, reduce again to their asymptotic counterparts. Hence the behaviour of the dynamic schemes in the early stages
is no different from that in previous discussion despite the different error measures. It is understood from definitions (82)–
(84) that, e.g. the error on the longitudinal integral length scale contains more information on the accuracy of the amplitude
of the largest resolved scales, whereas the error on the dissipation rate contains more information on the accuracy of the
amplitudes of the smallest resolved scales. Hence, accuracy analysis of the parameters L11ðtÞ, kðtÞ and eðtÞ accentuates the
numerical accuracy of the various finite difference schemes in a certain spectral band of the wavenumber range. First con-
sider the numerical errors on the longitudinal integral length scale L11 and on the kinetic energy k. It is observed that the
numerical errors of the standard asymptotic finite difference schemes are negative, which indicates a significant reduction
in the dissipation due to the numerics. In contrast, the numerical errors related to the dynamic finite difference schemes and
the Dispersion Relation Preserving schemes, remain positive during the simulation, indicating an increased dissipation due
to the numerics. However, the magnitudes of the errors are significantly smaller for the dynamic and DRP schemes than for
the standard schemes. Adapting the finite difference schemes for the smallest resolved scales such that global dispersion er-
ror is minimized remain therefore advantageous since it has a positive effect on the evolution of the largest resolved scales in
the flow (as reflected by L11). Hence, the general conclusions that applied to the mathematics-based errors remain valid for
the physics-based errors. Further, Fig. 16 indicates that the dynamic finite difference schemes generally perform better than
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their Dispersion-Relation Preserving counterparts. For example, this is most obvious for the 2nd-order explicit dynamic
scheme in the error-plots of the integral length scale and the kinetic energy. This good performance is mainly attributed
to the ability of the dynamic schemes to adapt to changing flow conditions and anisotropy and to the high-Reynolds calibra-
tion of the dynamic schemes with the �5/3 and �7/3 inertial range spectra instead of the uniform spectrum. Finally, the
numerical errors obtained with the dynamic model are in the same order of magnitude as those of obtained with the mul-
tiscale Smagorinsky model, and the tendencies look quite similar.

Although in the previous discussion a clear numerical improvement is shown for more accurate finite difference errors,
this does not indicate whether a better numerical approximation of the model will lead to a better overall performance.
Therefore, the total numerical errors are investigated, that is the combination of the numerical errors and the modeling er-
rors on the physics-related quantities. The total errors on the kinetic energy for the large-eddy simulation of the Taylor–
Green flow with the dynamic Smagorinsky model ðt P 7Þ are shown in Fig. 17. The total errors on the longitudinal length
scale and the dissipation rate are very similar. Fig. 18 depicts the time-integrated numerical and total error norms of the
physics-related quantities L11; k; e for the large-eddy simulations with both the dynamic and multiscale model. In accordance
with the results of Meyers et al. [16,32], contingent cancellation of numerical errors and modeling errors are witnessed.
These cancellations depend on the specific quantity which is examined. For instance, it is seen that the 2nd-order standard
scheme leads to the smallest total errors for the kinetic energy, whereas the 4th-order standard scheme leads to the smallest
total errors and the 2nd-order scheme leads to the largest total errors on the longitudinal integral length scale. On the other
hand, the 6th-order standard scheme gives the smallest total error on the dissipation rate. In contrast, the higher-order stan-
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dard schemes, the Dispersion-Relation Preserving schemes and the dynamic finite difference schemes, which are believed to
have better spectral characteristics, do not perform as well. For instance, the 2nd-order Dispersion-Relation Preserving
scheme leads to the largest total errors on L11 and k. Also the 2nd-order dynamic scheme leads to larger total errors in com-
parison with the high-order standard schemes although they are lower than those of the DRP scheme. In general, the DRP-
schemes and the dynamic schemes lead to larger total errors than the standard schemes on L11 and k, whereas the standard
schemes perform worse on e. Hence, aside from the observation that better numerical accuracy does not lead automatically
to better overall accuracy one may conclude that the best discretization scheme, which gives the lowest the total errors, de-
pends on the investigated quantity. It was verified that the reason for this peculiar behavior must be attributed to the res-
olution efficiency of the discretization of the viscous terms and the subgrid force. Indeed, low order discretizations of these
terms (e.g. 2nd-order standard discretization) implies significant dispersion errors leading to less effective dissipation of the
viscous term and the subgrid term. Since eddy-viscosity models were seen to be over-dissipative, the lack of dissipation due
to the poor numerics seems advantageous and leads to a better general performance. Hence, improving the numerical effi-
ciency of the finite difference scheme, and thus decreasing the dispersion errors, does not lead to better overall accuracy
since it enhances the dissipation. This phenomenon is illustrated in Fig. 19, where the energy spectra of the filtered DNS re-
sults, the pseudo-spectral LES results and the 2nd-order finite difference LES results for the multiscale model are shown at
times t ¼ 6 and t ¼ 14. The results with the dynamic Smagorinsky model are similar. Observe that the increased energy pile-
up of the 2nd-order solution at the end of the energy spectrum in comparison with the pseudo-spectral solution is due to the
reduced dissipation-effectiveness of the numerical method. As a consequence, the drain of energy in the cascade is reduced
and the resolved kinetic energy increases.

Nevertheless, Fig. 18 demonstrates that the multiscale model leads to smaller total errors than the dynamic model due to
its smaller modeling error contribution. This automatically raises the question if application of an even better subgrid model
would give better overall accuracy in combination with more accurate numerical methods. This statement is self-evident in
case of a perfect subgrid model in which modeling errors were absent. The total error then reduces to the numerical error
which decreases with increasing accuracy of the numerical method (see Fig. 18, left). However, since the modeling error with
the multiscale model is smaller than with the dynamic Smagorinsky model, the main trend is already visible from the results,
though rather subtle. Indeed, comparison of the total errors of the 2nd- and 4th-order standard schemes for both models,
demonstrates that the relative gain in accuracy when going from 2nd- to 4th-order is larger for the multiscale model than
for the dynamic model. This is most obvious for the longitudinal length scale L11, where the total error of the 2nd-order
scheme increases when the modeling error decreases whereas the total error of the 4th-order scheme decreases with
decreasing modeling error. Fig. 20 further illustrates this principle by showing the time-integrated total error on the kinetic
energy, in which the modeling error contribution is artificially decreased with 0%, 25%, 50%, 75% and 100%, under the
assumption that the numerical error remains unaltered. This idealized representation shows clearly that the mean error level
decreases with decreasing modeling error, and that the optimal finite difference method, which leads to the lowest total er-
rors, increases in numerical accuracy with decreasing modeling error. In conclusion, better subgrid models require more
accurate numerical methods in order to minimize the total error. Finally, it is emphasized that in case of the dynamic
and multiscale Smagorinsky model, the modeling error and numerical errors of the standard schemes cancel out each other,
since they have opposite signs, whereas the modeling errors and the numerical errors of the optimized schemes reinforce
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each other leading to larger total errors. However, in case of less dissipative non-eddy viscosity methods, using for instance
deconvolution operators [36], it may occur that modeling errors have opposite signs than those of eddy-viscosity models
(analogous to the situation in Fig. 9). As a consequence, the modeling errors and numerical errors of the standard schemes
would probably reinforce each other in such a case, whereas the modeling errors would cancel out the numerical errors re-
lated to the optimized schemes. Hence, cancellation of different errors depends not only on the type of numerical schemes,
but also on the type of subgrid model.

8. Future perspectives towards general flows
Although the dynamic finite difference schemes are examined in this work for the periodic Taylor–Green vortex flow,
they can be applied safely to more complex wall-bounded flows. Indeed, in earlier work of Fauconnier et al. [38,39] the dy-
namic finite differencing technique was already successfully investigated for the laminar flow in a two-dimensional lid-dri-
ven cavity. This study demonstrated that the dynamic finite difference technique allows to increase the numerical accuracy
of a wall-bounded laminar flow, by adapting the dynamic coefficients in the discretization scheme according to the specific
flow solution. These results in combination with those of the present study, indicate that the value of the dynamic coeffi-
cients, which are calculated in physical space using expression (26), does not only depend on the presence of turbulent fluc-
tuations in the flow field, but also on the mean flow characteristics. Since both the mean flow and the turbulent fluctuations
contribute to the shape of the energy spectrum, the dynamic coefficients are directly related to the shape of the energy spec-
trum, which can represent either laminar or turbulent flows.

An issue, closely related to this one, is the behaviour of the dynamic schemes in case of transitional spatially developing
flows. In the current investigation of the temporal transitional Taylor–Green vortex flow, a global averaging is assumed in the
least-squares approximation (26) for the dynamic coefficients. In case of transitional spatially developing flows, one might
consider to use a local averaging instead of a global averaging such that the dynamic schemes progressively switch from
asymptotic schemes in the laminar regions towards DRP-like schemes in the turbulent regions. However, this requires some
attention. First, it can be shown analytically, that a spatially varying discretization scheme is not symmetry-preserving
[40,41] and therefore inevitably leads to a loss of conservation of kinetic energy. This was already observed in previous work
[13], and the use of local averaging was therefore excluded in the present investigations. Secondly, it is not clear whether a
local averaging approach would be advantageous at all. Indeed, since the dynamic coefficients respond to both the mean flow
and the turbulent fluctuations, the dynamic coefficients in the laminar and turbulent regions might not differ much from
each other. If so, global determination of the dynamic coefficient could be sufficient for accuracy improvement. This imple-
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mentation would then be similar to that of Dispersion-Relation Preserving schemes, for which the stencil coefficients do not
vary in space either. However, this issue certainly deserves further attention in future research.

Finally, the dynamic schemes are constructed and examined on uniform Cartesian meshes so far. Nevertheless, it is pos-
sible to extend the dynamic finite differencing technique to non-uniform Cartesian meshes by means of a coordinate trans-
formation which maps the nonuniform grid onto a uniform grid. This approach, advocated by Vasilyev [42] and Verstappen
and Veldman [40], allows to preserve the symmetry of the underlying derivative operators, leading to a symmetry-preserv-
ing discretization of the Navier–Stokes equations. The extension of the dynamic schemes to non-uniform Cartesian meshes
will be investigated soon in future work.

9. Conclusions

In the present work, a general class of implicit dynamic finite difference schemes was developed which allow numerically
accurate large-eddy simulations of turbulent flows. This new class of dynamic schemes forms a generalization of the explicit
schemes that were already developed in earlier work of Fauconnier et al. [13]. Both implicit and explicit dynamic finite dif-
ference schemes allow to achieve optimal accuracy for all resolved scales of motion in the flow, rather than focusing only on
the asymptotic order of accuracy for the largest resolved scales. This approach implies that the dynamic finite difference
approximations minimize the total magnitude of the truncation error and thus preserve the global dispersion relation for
all Fourier modes in the entire wavenumber range. The construction of the dynamic finite difference approximations relies
on the determination of an optimal value for the coefficient in the leading order truncation term by combining the Taylor
series expansions on two different grid resolutions. The method allows to extract a nearly optimal value, provided that a
blending factor f is predefined, which allows comparison of the dynamic coefficient on both grids. This additional parameter
was calibrated for Re!1, using a simplified inertial range spectrum. In this work, the numerical accuracy and the proper-
ties of the 2nd- and 4th-order explicit and a 4th-order implicit dynamic scheme were evaluated for the large-eddy simulation
of the Taylor–Green vortex flow at Re ¼ 1500. Moreover, the interaction of these schemes with the dynamic Smagorinsky
model and the multiscale Smagorinsky model were analyzed. The main conclusions on the quality of the developed dynamic
finite difference schemes are enlisted below.

1. First it is concluded that the dynamic schemes systematically recover their potential asymptotic order of accuracy,
regardless of the value of the blending factor f, provided that all scales of motion in the flow field are very well resolved
on the computational grid. This asymptotic behaviour of the dynamic schemes is recovered in case the grid resolution is
at least 8 times smaller then the smallest resolved scales in the laminar or turbulent flow field. Hence, the dynamic finite
difference approximations adapt according to the smooth solution of the flow, focusing on maximum accuracy of the larg-
est resolved scales. Obviously, this is an advantage over the Dispersion-Relation Preserving schemes which remain sub-
optimal in that case, since they are designed a priori for non-smooth solutions on the computational grid.

2. Once the resolution becomes inadequate to represent well all scales of motion in the laminar or turbulent flow, the
dynamic schemes adjust the dynamic coefficient according to the spectral content of the solution on the computational
grid. The Fourier characteristics of the dynamic finite difference approximation are adapted such that the global disper-
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sion error in the entire wavenumber range up to the filter cutoff is minimized. This corresponds to the minimization of
the magnitude of the Taylor series that determines the entire truncation error.

3. As soon as the flow is fully turbulent and the energy spectrum exhibits an inertial range, both the dynamic finite differ-
ence schemes and the Dispersion-Relation Preserving schemes perform very similar. In general, the dynamic finite differ-
ence schemes tend to perform better due to their calibration with the correct slope of the energy spectrum for Re!1
and their ability to adapt to the resolution efficiency in each spatial direction of the computational mesh as well as the
instantaneous flow characteristics.

4. The blending factor f is calibrated such that the dynamic scheme is optimal for a fully developed turbulent flow at
Re!1. Since, the calibration was performed using an inertial range Kolmogorov spectrum, the optimal value for f it
expected to be applicable for a wide range of turbulent flows. In this work, the sensitivity of the dynamic schemes to
the value of the blending factor was investigated. It was observed that the sensitivity is quite small and that suboptimal
values of f lead only to a small penalization.

5. Further, it was observed that the dynamic finite difference scheme is sensitive to the anisotropy of the resolved flow field
in the large-eddy simulation of the Taylor–Green vortex. This could be a particularly interesting feature for the large-eddy
simulation of more complex and anisotropic flows, or for grids with strongly different resolutions in each direction.

6. Finally, despite the substantial improvement in numerical accuracy obtained by the linear dynamic finite difference
schemes and other high-order schemes, these schemes do not necessarily provide a more accurate solution of the
large-eddy simulation. Indeed, in comparison with more accurate numerical schemes, less accurate methods can lead
to advantageous cancellation between numerical errors and modeling errors, resulting into a reduction of the total errors.
These observations confirm the results in [16,32,1]. However, it was also demonstrated that the development of new and
better subgrid models necessitates the use of more accurate methods in order to obtain minimal total errors. Although it
is tempting to resign to application of lower order discretizations in combination with dissipative models, trusting upon
contingent cancellation of errors, the present work rather advocates to develop better models in combination with
highly-accurate discretizations such that both numerical errors and modeling errors are controlled more systematically.

The former conclusions confirm that the developed family of dynamic finite difference approximations can be a useful
and viable tool for numerically accurate large-eddy simulations of turbulent flows. Since the dynamic schemes do not re-
quire any limitation of the dynamic coefficients in order to assure stability, we are confident that the method can be used
as a black box in more complex applications in combination with an appropriate choice of the blending factor f. As discussed
in Section 4.2 one may justify the use of an additional clipping on the dynamic coefficients in practical simulations with no
de-aliasing in order to control the optimization interval of the dynamic schemes. The current implementation of the dynamic
schemes required only a computational overhead of 1.7%, which is negligible in comparison with the gain in accuracy.
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Appendix A. Three dynamic finite difference approximations

Here, a selection of three dynamic finite difference approximations are described, i.e. the 2nd- and 4th-order explicit dy-
namic finite difference approximations and the 4th-order implicit dynamic finite difference approximation. The coarse res-
olution is chosen twice the fine resolution such that a ¼ 2.

A.1. Second-order explicit dynamic finite difference approximation

The basic expression for both the 2nd-order dynamic finite difference approximations of the first derivative in a node
�uðxiÞ ¼ �ui reads
@u
@x
ðxÞ ¼ d�u

dx
þ cdyn

2;1 D2 d3�u
dx3 ; cdyn

2;1 ¼ c�2;1

d3 �u
dx3

� �2
� 4fc�2;3D

2 d5 �u
dx5

� �
d3 �u
dx3

� �� �
d3 �u
dx3 � 4fc�2;3D

2 d5 �u
dx5

� �2
� � ; ð86Þ
whereas the expression for the second derivative in �uðxiÞ ¼ �ui yields
@2u
@x2ðxÞ ¼

d2�u
dx2 þ cdyn

2;2 D2 d4�u
dx4 ; cdyn

2;2 ¼ c�2;2

d4 �u
dx4

� �2
� 4fc�2;4D

2 d6 �u
dx6

� �
d4 �u
dx4

� �� �
d4 �u
dx4 � 4fc�2;4D

2 d6 �u
dx6

� �2
� � : ð87Þ
From Taylor expansion the values c�2;1 ¼ � 1
6 and c�2;3 ¼ � 1

4 are obtained for the first derivative, whereas c�2;2 ¼ � 1
12 and

c�2;4 ¼ � 1
6 are obtained for the second derivative. The discretization stencil for these basic schemes as well as for the deriv-

atives in the calculation of the dynamic coefficients are given in Table 2.

A.2. Fourth-order explicit dynamic finite difference approximation

The basic expression for the dynamic finite difference approximation of the first derivative in a node �uðxiÞ ¼ �ui reads
@u
@x
ðxÞ ¼ d�u

dx
þ cdyn

4;1 D4 d5�u
dx5 ; cdyn

4;1 ¼ c�4;1

d5 �u
dx5

� �2
� 16

5 fc�2;5D
2 d7 �u

dx7

� �
d5 �u
dx5

� �� �
d5 �u
dx5 � 16

5 fc�2;5D
2 d7 �u

dx7

� �2
� � ; ð88Þ
whereas the expression for the second derivative in �uðxiÞ ¼ �ui yields
@2u
@x2ðxÞ ¼

d2�u
dx2 þ cdyn

4;2 D4 d6�u
dx6 ; cdyn

4;2 ¼ c�4;2

d6 �u
dx6

� �2
� 16

5 fc�2;6D
2 d8 �u

dx8

� �
d6 �u
dx6

� �� �
d6 �u
dx6 � 16

5 fc�2;6D
2 d8 �u

dx8

� �2
� � : ð89Þ
From Taylor expansion the values c�4;1 ¼ 1
30 and c�2;5 ¼ � 1

3 are obtained for the first derivative, while c�4;2 ¼ 1
90 and c�2;6 ¼ � 1

4 are
obtained for the second derivative. The discretization stencil for the basic scheme as well as for the derivatives in the cal-
culation of the dynamic coefficient are given in Table 2

A.3. Fourth-order implicit dynamic finite difference approximation

The basic expression for the 4th-order dynamic implicit finite difference approximation of the first derivative in a node
�uðxiÞ ¼ �ui can be formulated as
X1

l¼�1

al
cdyn

4;1

c�4;1

 !
@u
@x
ðxiþlÞ ¼

X2

j¼�2

bj

D

cdyn
4;1

c�4;1

 !
�uðxiþjÞ; ð90Þ
in which cdyn
4;1 is calculated with expression (26), leading to
cdyn
4;1 ¼ c�4;1

d5 �u
dx5

� �2
� 16

5 fc�2;5D
2 d7 �u

dx7

� �
d5 �u
dx5

� �� �
d5 �u
dx5 � 16

5 fc�2;5D
2 d7 �u

dx7

� �2
� � : ð91Þ
From Taylor expansion the values c�4;1 ¼ � 1
120 and c�2;5 ¼ � 1

3 are obtained. The basic expression for the 4th-order dynamic im-
plicit finite difference approximation of the second derivative in a node �uðxiÞ ¼ �ui can be formulated as



Table 2
Overview of the stencils of the three selected dynamic finite difference approximation. Note that bi ¼ �b�i for the odd derivatives whereas bi ¼ b�i for the even
derivatives.

n a0 a�1 b0 �b�1 �b�2 �b�3 �b�4 OðDkÞ

1 0 �cdyn
2;1 þ 1

2
1
2 cdyn

2;1
2

1 0 2
3þ 5

2 cdyn
4;1 � 1

12� 2cdyn
4;1

1
2 cdyn

4;1
4

1 1 1
4þ 1

12
cdyn

4;1
c�4;1

0 3
4þ 1

36
cdyn

4;1
c�4;1

1
36

cdyn
4;1

c�4;1

4

2 6cdyn
2;2 � 2 1� 4cdyn

2;2 cdyn
2;2

2

2 � 5
2� 20cdyn

4;2
4
3þ 15cdyn

4;2 �6cdyn
4;2 � 1

12 cdyn
4;2

4

2 1 1
10þ 9

110
cdyn

4;2
c�4;2

� 12
5 þ 9

110
cdyn

4;2
c�4;2

6
5� 6

55
cdyn

4;2
c�4;2

3
44

cdyn
4;2

c�4;2

4

3 0 �1 1
2

2

4 6 �4 1 2
5 0 5

2
�2 1

2
2

6 �20 15 �6 1 2
7 0 �7 7 �3 1

2
2

8 70 �56 28 �8 1 2
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X1

l¼�1

al
cdyn

4;2

c�4;2

 !
@2u
@x2ðxiþlÞ ¼

X2

j¼�2

bj

D2

cdyn
4;2

c�4;2

 !
�uðxiþjÞ; ð92Þ
in which cdyn
4;2 is calculated with expression (26), leading to
cdyn
4;2 ¼ c�4;2

d6 �u
dx6

� �2
� 16

5 fc�2;6D
2 d8 �u

dx8

� �
d6 �u
dx6

� �� �
d6 �u
dx6 � 16

5 fc�2;6D
2 d8 �u

dx8

� �2
� � : ð93Þ
From Taylor expansion the values c�4;2 ¼ � 1
200 and c�2;6 ¼ � 1

4 are obtained. The discretization stencil for the basic scheme as
well as for the derivatives in the calculation of the dynamic coefficient are given in Table 2.

Although the higher derivatives in the former expressions can be obtained by implicit finite difference approximations, no
attempt is done in this work. Hence, these derivatives are calculated using standard explicit finite difference approximations.
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